IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp986-996.html
   My bibliography  Save this article

Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium

Author

Listed:
  • Menon, Govind S.
  • Murali, S.
  • Elias, Jacob
  • Aniesrani Delfiya, D.S.
  • Alfiya, P.V.
  • Samuel, Manoj P.

Abstract

The electrical and thermal performance of an unglazed photovoltaic thermal (PVT) system integrated with a serpentine coil configured sheet and tube thermal absorber setup was evaluated using water and copper oxide-based nanofluid. An uncooled PVT system reached a maximum panel temperature of 68.4 °C at noon and obtained an average electrical efficiency of 12.98%. Water and nanofluid cooling of the PVT system reduced the panel temperature by 15 °C and 23.7 °C at noontime, respectively. Compared to the uncooled PVT system, the average electrical efficiency of water and nanofluid cooled PVT system increased by 12.32% and 35.67% to obtain 14.58% and 17.61%, respectively. The thermal efficiency of the nanofluid cooled PVT system (71.17%) was significantly higher than water cooling (58.77%) due to maximum heat absorption by nanoparticles. It was also observed that the overall efficiency of the nanofluid cooled PVT system was 21% higher than the water-cooled system. Also, obtained the highest primary energy-saving efficiency for the nanofluid cooled PVT system.

Suggested Citation

  • Menon, Govind S. & Murali, S. & Elias, Jacob & Aniesrani Delfiya, D.S. & Alfiya, P.V. & Samuel, Manoj P., 2022. "Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium," Renewable Energy, Elsevier, vol. 188(C), pages 986-996.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:986-996
    DOI: 10.1016/j.renene.2022.02.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murali, S. & Amulya, P.R. & Alfiya, P.V. & Delfiya, D.S. Aniesrani & Samuel, Manoj P., 2020. "Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps," Renewable Energy, Elsevier, vol. 147(P1), pages 2417-2428.
    2. Tomar, Vivek & Norton, Brian & Tiwari, G.N., 2019. "A novel approach towards investigating the performance of different PVT configurations integrated on test cells: An experimental study," Renewable Energy, Elsevier, vol. 137(C), pages 93-108.
    3. Dimri, Neha & Tiwari, Arvind & Tiwari, G.N., 2019. "Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors," Renewable Energy, Elsevier, vol. 134(C), pages 343-356.
    4. Joo Hee Lee & Seong Geon Hwang & Gwi Hyun Lee, 2019. "Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids," Energies, MDPI, vol. 12(16), pages 1-16, August.
    5. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    6. Brottier, Laetitia & Bennacer, Rachid, 2020. "Thermal performance analysis of 28 PVT solar domestic hot water installations in Western Europe," Renewable Energy, Elsevier, vol. 160(C), pages 196-210.
    7. Nasrin, R. & Rahim, N.A. & Fayaz, H. & Hasanuzzaman, M., 2018. "Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research," Renewable Energy, Elsevier, vol. 121(C), pages 286-300.
    8. Abadeh, Abazar & Rejeb, Oussama & Sardarabadi, Mohammad & Menezo, Christophe & Passandideh-Fard, Mohammad & Jemni, Abdelmajid, 2018. "Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs)," Energy, Elsevier, vol. 159(C), pages 1234-1243.
    9. Yu, Ying & Long, Enshen & Chen, Xi & Yang, Hongxing, 2019. "Testing and modelling an unglazed photovoltaic thermal collector for application in Sichuan Basin," Applied Energy, Elsevier, vol. 242(C), pages 931-941.
    10. Fu, Zaiguo & Liang, Xiaotian & Li, Yang & Li, Lingtong & Zhu, Qunzhi, 2021. "Performance improvement of a PVT system using a multilayer structural heat exchanger with PCMs," Renewable Energy, Elsevier, vol. 169(C), pages 308-317.
    11. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    12. Lari, Muhammad O. & Sahin, Ahmet Z., 2018. "Effect of retrofitting a silver/water nanofluid-based photovoltaic/thermal (PV/T) system with a PCM-thermal battery for residential applications," Renewable Energy, Elsevier, vol. 122(C), pages 98-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    2. Cong Jiao & Zeyu Li, 2023. "An Updated Review of Solar Cooling Systems Driven by Photovoltaic–Thermal Collectors," Energies, MDPI, vol. 16(14), pages 1-34, July.
    3. Sheikholeslami, M. & Khalili, Z., 2024. "Solar photovoltaic-thermal system with novel design of tube containing eco-friendly nanofluid," Renewable Energy, Elsevier, vol. 222(C).
    4. Chan, Siyan & Zhao, Bin & Yu, Qiongwan & Chen, Ken & Hu, Kongfu & Pei, Gang, 2024. "Seasonal heat regulation in photovoltaic/thermal collectors with switchable backplate technology: Experiments and simulations," Renewable Energy, Elsevier, vol. 224(C).
    5. Khalaf, Arkan Elttayef & Eleiwi, Muhammad Asmail & Yassen, Tadahmun A., 2023. "Enhancing the overall performance of the hybrid solar photovoltaic collector by open water cycle jet-cooling," Renewable Energy, Elsevier, vol. 208(C), pages 492-503.
    6. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Hoseinzadeh, Siamak & Moser, David & Nastasi, Benedetto & Sayyaadi, Hoseyn & Astiaso Garcia, Davide, 2023. "Thermography and machine learning combination for comprehensive analysis of transient response of a photovoltaic module to water cooling," Renewable Energy, Elsevier, vol. 210(C), pages 451-461.
    7. Shan, Feng & Fang, Guiyin & Zhao, Lei & Zhu, Yunzhi, 2024. "Optical, electrical, and thermal performance of low-concentrating photovoltaic/thermal system using microencapsulated phase change material suspension as a coolant," Renewable Energy, Elsevier, vol. 227(C).
    8. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    9. Miqdam T. Chaichan & Hussein A. Kazem & Moafaq K. S. Al-Ghezi & Ali H. A. Al-Waeli & Ali J. Ali & Kamaruzzaman Sopian & Abdul Amir H. Kadhum & Wan Nor Roslam Wan Isahak & Mohd S. Takriff & Ahmed A. Al, 2023. "Effect of Different Preparation Parameters on the Stability and Thermal Conductivity of MWCNT-Based Nanofluid Used for Photovoltaic/Thermal Cooling," Sustainability, MDPI, vol. 15(9), pages 1-24, May.
    10. Basalike, Pie & Peng, Wang & Zhang, Jili, 2022. "Numerical study on the performance of photovoltaic thermal unit condenser with water/nanofluids as fluids medium," Renewable Energy, Elsevier, vol. 197(C), pages 606-616.
    11. Wang, Jikai & Zhu, Qunzhi & Cai, Jingyong & Fu, Zaiguo & Zhang, Tao & Wu, Chenxi, 2024. "Design and experimental study of a novel flexible PV/T structure," Energy, Elsevier, vol. 296(C).
    12. Hussein A. Kazem & Miqdam T. Chaichan & Ali H. A. Al-Waeli & Hasila Jarimi & Adnan Ibrahim & K. Sopian, 2022. "Effect of Temperature on the Electrical and Thermal Behaviour of a Photovoltaic/Thermal System Cooled Using SiC Nanofluid: An Experimental and Comparison Study," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    13. Kouravand, Amir & Kasaeian, Alibakhsh & Pourfayaz, Fathollah & Vaziri Rad, Mohammad Amin, 2022. "Evaluation of a nanofluid-based concentrating photovoltaic thermal system integrated with finned PCM heatsink: An experimental study," Renewable Energy, Elsevier, vol. 201(P1), pages 1010-1025.
    14. Herrando, María & Fantoni, Guillermo & Cubero, Ana & Simón-Allué, Raquel & Guedea, Isabel & Fueyo, Norberto, 2023. "Numerical analysis of the fluid flow and heat transfer of a hybrid PV-thermal collector and performance assessment," Renewable Energy, Elsevier, vol. 209(C), pages 122-132.
    15. Ahmed Mohamed Soliman, 2023. "A Numerical Investigation of PVT System Performance with Various Cooling Configurations," Energies, MDPI, vol. 16(7), pages 1-25, March.
    16. Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Thermodynamic modeling and performance optimization of nanofluid-based photovoltaic/thermal system using central composite design scheme of response surface methodology," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
    3. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).
    5. Mohammadpour, Javad & Salehi, Fatemeh & Sheikholeslami, Mohsen & Lee, Ann, 2022. "A computational study on nanofluid impingement jets in thermal management of photovoltaic panel," Renewable Energy, Elsevier, vol. 189(C), pages 970-982.
    6. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    7. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    8. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    9. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    10. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Youngho Lee & Hyomin Jeong & Yonmo Sung, 2021. "Thermal Absorption Performance Evaluation of Water-Based Nanofluids (CNTs, Cu, and Al 2 O 3 ) for Solar Thermal Harvesting," Energies, MDPI, vol. 14(16), pages 1-12, August.
    13. Iván Acosta-Pazmiño & Carlos Rivera-Solorio & Miguel Gijón-Rivera, 2020. "Energetic and Economic Analyses of an LCPV/T Solar Hybrid Plant for a Sports Center Building in Mexico," Energies, MDPI, vol. 13(21), pages 1-17, October.
    14. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.
    15. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2022. "Performance analysis of a concentrated system with series photovoltaic/thermal module and solar thermal collector integrated with PCM and TEG," Energy, Elsevier, vol. 249(C).
    16. Daniel John & Martin Kaltschmitt, 2022. "Control of a PVT-Heat-Pump-System Based on Reinforcement Learning–Operating Cost Reduction through Flow Rate Variation," Energies, MDPI, vol. 15(7), pages 1-19, April.
    17. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
    18. Eisapour, Amir Hossein & Eisapour, M. & Hosseini, M.J. & Shafaghat, A.H. & Talebizadeh Sardari, P. & Ranjbar, A.A., 2021. "Toward a highly efficient photovoltaic thermal module: Energy and exergy analysis," Renewable Energy, Elsevier, vol. 169(C), pages 1351-1372.
    19. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    20. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:986-996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.