IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017779.html
   My bibliography  Save this article

Solar photovoltaic-thermal system with novel design of tube containing eco-friendly nanofluid

Author

Listed:
  • Sheikholeslami, M.
  • Khalili, Z.

Abstract

In photovoltaic (PV) solar systems, electricity can be produced from part of the sunlight and the remaining energy raises the temperature. The aim of the current investigation is to suggest a novel design for the heat transfer tube's (HTT) cross section for overcoming this challenge in photovoltaic/thermal (PVT) systems. In this numerical simulation, the range of fluid inlet velocity (Vin) was set between 0.01 and 0.18 m/s. The value of ambient temperature (Tamb) and fluid inlet temperature (Tin) is 30 °C, and solar radiation (G) has been adjusted to 800 W/m2. A comparison was made between the circular tube and the 8-lobed tube with the same hydraulic diameter, and the better performance of the 8-lobed tube was proved. To meet the increased efficiency of the PVT system, copper fins with four different arrangements were employed. The highest efficiency occurred when the fins were placed all around the inside of the HTT. To create heat transfer fluid (HTF), non-toxic graphene nanoplatelets (GNP) have been mixed with water involving two weight fractions (0.025 % and 0.1 %). Examining the effect of changing the fluid inlet velocity (Vin), it was concluded that the system's electrical performance is increased by 5.8 %, with rise of Vin, in the best case. By using the GNP nanoplatelets (0.1 %), at Re = 1611, the maximum exergy, electrical, and thermal performances of the unit were 15.32 %, 14.05 %, and 55.22 %, respectively, in the best case. In the best case, more carbon dioxide (about 7.1 Tons) can be reduced and the carbon credit is 5.5 % higher than that of base case. In addition, the payback period is less than 2 years in the best case with 18700$ profit in the 10th year.

Suggested Citation

  • Sheikholeslami, M. & Khalili, Z., 2024. "Solar photovoltaic-thermal system with novel design of tube containing eco-friendly nanofluid," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017779
    DOI: 10.1016/j.renene.2023.119862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.