Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.10.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
- Daghigh, Roonak & Shafieian, Abdellah, 2016. "An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system," Renewable Energy, Elsevier, vol. 96(PA), pages 872-880.
- Lakshmi, D.V.N. & Muthukumar, P. & Layek, Apurba & Nayak, Prakash Kumar, 2018. "Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage," Renewable Energy, Elsevier, vol. 120(C), pages 23-34.
- Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
- Bal, Lalit M. & Satya, Santosh & Naik, S.N. & Meda, Venkatesh, 2011. "Review of solar dryers with latent heat storage systems for agricultural products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 876-880, January.
- Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
- Deeto, S. & Thepa, S. & Monyakul, V. & Songprakorp, R., 2018. "The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification," Renewable Energy, Elsevier, vol. 115(C), pages 954-968.
- Natarajan, Karunaraja & Thokchom, Subhaschandra Singh & Verma, Tikendra Nath & Nashine, Prerana, 2017. "Convective solar drying of Vitis vinifera &Momordica charantia using thermal storage materials," Renewable Energy, Elsevier, vol. 113(C), pages 1193-1200.
- T Zhang & Q Z Zhu & W He & G Pei & J Ji, 2017. "Annual performance comparison between solar water heating system and solar photovoltaic/thermal system—a case study in Shanghai city," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(4), pages 420-429.
- Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
- Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
- Sivakumar, S. & Velmurugan, C. & Dhas, D.S. Ebenezer Jacob & Solomon, A. Brusly & Dev Wins, K. Leo, 2020. "Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer," Renewable Energy, Elsevier, vol. 155(C), pages 1165-1172.
- Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
- Menon, Govind S. & Murali, S. & Elias, Jacob & Aniesrani Delfiya, D.S. & Alfiya, P.V. & Samuel, Manoj P., 2022. "Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium," Renewable Energy, Elsevier, vol. 188(C), pages 986-996.
- Kalaiarasi, G. & Velraj, R. & Vanjeswaran, M.N. & Ganesh Pandian, N., 2020. "Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 255-265.
- Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
- Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
- Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
- Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
- Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
- Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
- Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
- Ahmed, N. & Elfeky, K.E. & Lu, Lin & Wang, Q.W., 2020. "Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications," Renewable Energy, Elsevier, vol. 152(C), pages 684-697.
- Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
- Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Ammendola, Paola & Raganati, Federica & Miccio, Francesco & Murri, Annalisa Natali & Landi, Elena, 2020. "Insights into utilization of strontium carbonate for thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 769-781.
- Khouya, A. & Draoui, A., 2019. "Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application," Renewable Energy, Elsevier, vol. 130(C), pages 796-813.
- Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.
- Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
- Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
More about this item
Keywords
Solar dryer; Thermal energy storage; Sensible heat; LPG water heater; Heat exchanger;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:2417-2428. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.