IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v247y2019icp374-388.html
   My bibliography  Save this article

Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials

Author

Listed:
  • Li, Chuan
  • Li, Qi
  • Ding, Yulong

Abstract

This paper concerns the thermal performance of a high temperature packed bed thermal energy storage (TES) system containing carbonate salt based composite phase change materials (CPCMs) that made of a eutectic carbonate salt of NaLiCO3 (phase change material, PCM), MgO (ceramic skeleton material, CSM) and graphite flakes (thermal conductivity enhancement material, TCEM). A rectangular packed bed configuration containing CPCMs bricks is built and a three-dimensional computational model is established to study the thermal performance of the system. The enthalpy-porosity approach and surface-to-surface (S2S) radiation model are respectively adopted to model the phase change process and the radiation heat transfer inside the system. A ferric oxide is also used as the sensible heat storage material to compare with the CPCMs based system. The numerical model is first compared with the published experimental data and reasonably good agreements are obtained, indicating the confidence of the model. Extensive modelling is then performed under different conditions to investigate the effects of various parameters including the radiation heat transfer, TCEM mass loading and heat transfer fluid (HTF) operation conditions on the system performance. The results indicate that the system containing CPCMs shows better charging and discharging performance in comparison with the system containing ferric oxide due to the large energy storage density and high thermal conductivity. The thermal radiation has an important influence on the system performance. The system heat transfer efficiency is apparently enhanced when the radiation heat transfer influence is taken into consideration. When the emissivity is at δ = 1, the total charging period of the system is respectively shortened by 10.6% and 25.7% than that of the emissivities at δ = 0.5 and δ = 0. The use of TCEM in the CPCMs significantly enhances the heat transfer performance of the system. An increase in the TCEM loading from 0% to 30% respectively leads to the reduction in charging and discharging processes by almost 30.3% and 29.2%. The results also indicate that, for a fixed charging/discharging power, both the overall charging and discharging periods of the system decrease with the increase of Re number or decrease of Ste number since an increase in the Re number (decrease in the Ste number) leads to an overall enhancement of the heat transfer between the HTF and the CPCMs bricks and hence an overall improvement in the charging and discharging rates.

Suggested Citation

  • Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
  • Handle: RePEc:eee:appene:v:247:y:2019:i:c:p:374-388
    DOI: 10.1016/j.apenergy.2019.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919306646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
    2. Joseph P. Heremans, 2014. "The ugly duckling," Nature, Nature, vol. 508(7496), pages 327-328, April.
    3. Oró, Eduard & Castell, Albert & Chiu, Justin & Martin, Viktoria & Cabeza, Luisa F., 2013. "Stratification analysis in packed bed thermal energy storage systems," Applied Energy, Elsevier, vol. 109(C), pages 476-487.
    4. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    5. Bhagat, Kunal & Saha, Sandip K., 2016. "Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant," Renewable Energy, Elsevier, vol. 95(C), pages 323-336.
    6. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    7. Wang, Peilun & Wang, Xiang & Huang, Yun & Li, Chuan & Peng, Zhijian & Ding, Yulong, 2015. "Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs)," Applied Energy, Elsevier, vol. 142(C), pages 328-336.
    8. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling," Renewable Energy, Elsevier, vol. 140(C), pages 140-151.
    9. Peng, Hao & Li, Rui & Ling, Xiang & Dong, Huihua, 2015. "Modeling on heat storage performance of compressed air in a packed bed system," Applied Energy, Elsevier, vol. 160(C), pages 1-9.
    10. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    11. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    12. Tian, Heqing & Du, Lichan & Wei, Xiaolan & Deng, Suyan & Wang, Weilong & Ding, Jing, 2017. "Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 525-530.
    13. Li, Chuan & Li, Qi & Li, Yongliang & She, Xiaohui & Cao, Hui & Zhang, Peikun & Wang, Li & Ding, Yulong, 2019. "Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 238(C), pages 1074-1083.
    14. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    15. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    16. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    17. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    18. Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing, 2009. "Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials," Applied Energy, Elsevier, vol. 86(2), pages 170-174, February.
    19. Li, Ming-Jia & Jin, Bo & Ma, Zhao & Yuan, Fan, 2018. "Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material," Applied Energy, Elsevier, vol. 221(C), pages 1-15.
    20. Al-Shannaq, Refat & Young, Brent & Farid, Mohammed, 2019. "Cold energy storage in a packed bed of novel graphite/PCM composite spheres," Energy, Elsevier, vol. 171(C), pages 296-305.
    21. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the effective thermal conductivity of carbonate salt based composite phase change materials for medium and high temperature thermal energy storage," Energy, Elsevier, vol. 176(C), pages 728-741.
    22. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling," Renewable Energy, Elsevier, vol. 140(C), pages 140-151.
    2. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    3. Wang, Wei & He, Xibo & Hou, Yicheng & Qiu, Jun & Han, Dongmei & Shuai, Yong, 2021. "Thermal performance analysis of packed-bed thermal energy storage with radial gradient arrangement for phase change materials," Renewable Energy, Elsevier, vol. 173(C), pages 768-780.
    4. Li, Chuan & Li, Qi & Li, Yongliang & She, Xiaohui & Cao, Hui & Zhang, Peikun & Wang, Li & Ding, Yulong, 2019. "Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 238(C), pages 1074-1083.
    5. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    6. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Wang, Wei & Shuai, Yong & Qiu, Jun & He, Xibo & Hou, Yicheng, 2022. "Effect of steady-state and unstable-state inlet boundary on the thermal performance of packed-bed latent heat storage system integrated with concentrating solar collectors," Renewable Energy, Elsevier, vol. 183(C), pages 251-266.
    8. Wang, Wei & Shuai, Yong & He, Xibo & Hou, Yicheng & Qiu, Jun & Huang, Yudong, 2023. "Influence of tank-to-particle diameter ratio on thermal storage performance of random packed-bed with spherical macro-encapsulated phase change materials," Energy, Elsevier, vol. 282(C).
    9. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    10. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    11. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    13. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    14. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    15. Ahmad, Abdalqader & Anagnostopoulos, Argyrios & Navarro, M. Elena & Maksum, Yelaman & Sharma, Shivangi & Ding, Yulong, 2024. "A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand," Energy, Elsevier, vol. 294(C).
    16. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    17. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    18. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    19. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    20. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:374-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.