IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp728-741.html
   My bibliography  Save this article

Investigation on the effective thermal conductivity of carbonate salt based composite phase change materials for medium and high temperature thermal energy storage

Author

Listed:
  • Li, Chuan
  • Li, Qi
  • Ding, Yulong

Abstract

This paper concerns the effective thermal conductivity of carbonate salt based composite phase change materials (CPCMs). Such materials typically consist of a carbonate salt as the phase change material (PCM), an MgO as the ceramic skeleton material (CSM) and a graphite flake as the thermal conductivity enhancement material (TCEM), and are mainly used for medium and high temperature thermal energy storage applications. Two carbonate salt based CPCMs are prepared and studied with one being NaLiCO3 and the other Na2CO3. A theoretical model based on the microstructure characteristics is proposed to predict the effective thermal conductivity of the composites. The model uses a unit cell modelled as two MgO spheres in contact with the PCM and TCEM mixture filled in the interparticle void of them. Two models reported in the literature are employed to determine the thermal resistance between the particles and to estimate the sintered neck parameters. A parallel-plate based experimental set up is constructed to measure the effective thermal conductivity of the composites. The modelling results are compared with experimental data and reasonably agreements are obtained. Various literature models for the effective thermal conductivity predication are also compared with each other and experimental data.

Suggested Citation

  • Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the effective thermal conductivity of carbonate salt based composite phase change materials for medium and high temperature thermal energy storage," Energy, Elsevier, vol. 176(C), pages 728-741.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:728-741
    DOI: 10.1016/j.energy.2019.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph P. Heremans, 2014. "The ugly duckling," Nature, Nature, vol. 508(7496), pages 327-328, April.
    2. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling," Renewable Energy, Elsevier, vol. 140(C), pages 140-151.
    3. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    4. Leng, Guanghui & Qiao, Geng & Jiang, Zhu & Xu, Guizhi & Qin, Yue & Chang, Chun & Ding, Yulong, 2018. "Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 217(C), pages 212-220.
    5. Li, Chuan & Li, Qi & Li, Yongliang & She, Xiaohui & Cao, Hui & Zhang, Peikun & Wang, Li & Ding, Yulong, 2019. "Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 238(C), pages 1074-1083.
    6. Verma, Prashant & Varun & Singal, S.K., 2008. "Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 999-1031, May.
    7. Li, Chuan & Li, Qi & Cong, Lin & jiang, Feng & Zhao, Yanqi & Liu, Chuanping & Xiong, Yaxuan & Chang, Chun & Ding, Yulong, 2019. "MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properti," Applied Energy, Elsevier, vol. 250(C), pages 81-91.
    8. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Hangbin & Liu, Xianglei & Xuan, Yimin & Song, Chao & Liu, Dachuan & Zhu, Qibin & Zhu, Zhonghui & Gao, Ke & Li, Yongliang & Ding, Yulong, 2021. "Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation," Renewable Energy, Elsevier, vol. 178(C), pages 1353-1369.
    2. Li, Chuan & Li, Qi & Cong, Lin & jiang, Feng & Zhao, Yanqi & Liu, Chuanping & Xiong, Yaxuan & Chang, Chun & Ding, Yulong, 2019. "MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properti," Applied Energy, Elsevier, vol. 250(C), pages 81-91.
    3. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    4. Li, Xinyi & Cui, Wei & Simon, Terrence & Ma, Ting & Cui, Tianhong & Wang, Qiuwang, 2021. "Pore-scale analysis on selection of composite phase change materials for photovoltaic thermal management," Applied Energy, Elsevier, vol. 302(C).
    5. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    6. Anagnostopoulos, Argyrios & Xenitopoulos, Theofilos & Ding, Yulong & Seferlis, Panos, 2024. "An integrated machine learning and metaheuristic approach for advanced packed bed latent heat storage system design and optimization," Energy, Elsevier, vol. 297(C).
    7. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    8. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Liang, L. & Wang, T.Y. & An, Y., 2021. "Optimization of phase change thermal storage units/devices with multichannel flat tubes: A theoretical study," Renewable Energy, Elsevier, vol. 167(C), pages 700-717.
    9. Li, Chuan & Li, Qi & Ge, Ruihuan, 2023. "Comparison of performance enhancement in a shell and tube based latent heat thermal energy storage device containing different structured fins," Renewable Energy, Elsevier, vol. 206(C), pages 994-1006.
    10. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Wang, Wei & Shuai, Yong & He, Xibo & Hou, Yicheng & Qiu, Jun & Huang, Yudong, 2023. "Influence of tank-to-particle diameter ratio on thermal storage performance of random packed-bed with spherical macro-encapsulated phase change materials," Energy, Elsevier, vol. 282(C).
    12. Chao, Weixiang & Yang, Haiyue & Cao, Guoliang & Sun, Xiaohan & Wang, Xin & Wang, Chengyu, 2020. "Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage," Energy, Elsevier, vol. 202(C).
    13. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Honcová, Pavla & Sádovská, Galina & Pastvová, Jana & Koštál, Petr & Seidel, Jürgen & Sazama, Petr & Pilař, Radim, 2021. "Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate," Renewable Energy, Elsevier, vol. 168(C), pages 1015-1026.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Li, Chuan & Li, Qi & Cong, Lin & jiang, Feng & Zhao, Yanqi & Liu, Chuanping & Xiong, Yaxuan & Chang, Chun & Ding, Yulong, 2019. "MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properti," Applied Energy, Elsevier, vol. 250(C), pages 81-91.
    3. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    4. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.
    5. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling," Renewable Energy, Elsevier, vol. 140(C), pages 140-151.
    6. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    7. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Yogi Goswami, D. & Stefanakos, Elias, 2017. "Dynamics of phase change in a vertical PCM capsule in the presence of radiation at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 498-506.
    8. Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Akiyama, Tomohiro & Nomura, Takahiro, 2020. "Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications," Applied Energy, Elsevier, vol. 265(C).
    9. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    10. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    11. Li, Ya-Qi & He, Ya-Ling & Wang, Zhi-Feng & Xu, Chao & Wang, Weiwei, 2012. "Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 39(1), pages 447-454.
    12. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    13. Zhou, Zhihua & Zhang, Zhiming & Zuo, Jian & Huang, Ke & Zhang, Liying, 2015. "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 692-703.
    14. Gil, Antoni & Barreneche, Camila & Moreno, Pere & Solé, Cristian & Inés Fernández, A. & Cabeza, Luisa F., 2013. "Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale," Applied Energy, Elsevier, vol. 111(C), pages 1107-1113.
    15. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    16. Bruch, A. & Molina, S. & Esence, T. & Fourmigué, J.F. & Couturier, R., 2017. "Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system," Renewable Energy, Elsevier, vol. 103(C), pages 277-285.
    17. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    18. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    19. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    20. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:728-741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.