IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1193-1200.html
   My bibliography  Save this article

Convective solar drying of Vitis vinifera &Momordica charantia using thermal storage materials

Author

Listed:
  • Natarajan, Karunaraja
  • Thokchom, Subhaschandra Singh
  • Verma, Tikendra Nath
  • Nashine, Prerana

Abstract

Solar drying is one of the most feasible and cheap method in preservation of foods and commodities. An experimental analysis was performed on a solar tunnel dryer under the meteorological conditions of Negamam, India, for drying samples of Vitis vinifera and Momordica charantia. Sand bed, rock bed and aluminum filings were used as thermal storage materials for the study. A comparison was made between the dryer (with and without the application of thermal storage materials) and open sun drying to check the effectiveness in dehydrating the samples. There were effective reductions in drying time as well as moisture removal rate (85%–10% in 27 h and 88%–6% in 6 h) using the solar tunnel dryer (with or without thermal storage materials) as compared with open sun drying. Average thermal efficiency of the solar tunnel dryer with thermal storage materials was found to be greater by 2–3% as compared with the one without thermal storage material. Amongst the thermal storage materials, sand was found to have higher effectiveness with an average thermal efficiency of 19.6% and 15.46% while drying Vitis vinifera and Momordica charantia respectively.

Suggested Citation

  • Natarajan, Karunaraja & Thokchom, Subhaschandra Singh & Verma, Tikendra Nath & Nashine, Prerana, 2017. "Convective solar drying of Vitis vinifera &Momordica charantia using thermal storage materials," Renewable Energy, Elsevier, vol. 113(C), pages 1193-1200.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1193-1200
    DOI: 10.1016/j.renene.2017.06.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117306006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    2. Morad, M.M. & El-Shazly, M.A. & Wasfy, K.I. & El-Maghawry, Hend A.M., 2017. "Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants," Renewable Energy, Elsevier, vol. 101(C), pages 992-1004.
    3. Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.
    4. Baniasadi, Ehsan & Ranjbar, Saeed & Boostanipour, Omid, 2017. "Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage," Renewable Energy, Elsevier, vol. 112(C), pages 143-150.
    5. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 105(C), pages 583-589.
    6. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    7. Gbaha, P. & Yobouet Andoh, H. & Kouassi Saraka, J. & Kaménan Koua, B. & Touré, S., 2007. "Experimental investigation of a solar dryer with natural convective heat flow," Renewable Energy, Elsevier, vol. 32(11), pages 1817-1829.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murali, S. & Amulya, P.R. & Alfiya, P.V. & Delfiya, D.S. Aniesrani & Samuel, Manoj P., 2020. "Design and performance evaluation of solar - LPG hybrid dryer for drying of shrimps," Renewable Energy, Elsevier, vol. 147(P1), pages 2417-2428.
    2. Olivkar, Piyush R. & Katekar, Vikrant P. & Deshmukh, Sandip S. & Palatkar, Sanyukta V., 2022. "Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
    4. S Ayyappan, 2018. "Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying," Energy & Environment, , vol. 29(8), pages 1482-1494, December.
    5. Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
    6. Lakshmi, D.V.N. & Muthukumar, P. & Layek, Apurba & Nayak, Prakash Kumar, 2018. "Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage," Renewable Energy, Elsevier, vol. 120(C), pages 23-34.
    7. Philip, Nadiya & Duraipandi, Sruthi & Sreekumar, A., 2022. "Techno-economic analysis of greenhouse solar dryer for drying agricultural produce," Renewable Energy, Elsevier, vol. 199(C), pages 613-627.
    8. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection," Renewable Energy, Elsevier, vol. 133(C), pages 849-860.
    9. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    3. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    4. Afshari, Faraz & Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Şahinkesen, İstemihan & Di Nicola, Giovanni, 2021. "Dehumidification of sewage sludge using quonset solar tunnel dryer: An experimental and numerical approach," Renewable Energy, Elsevier, vol. 171(C), pages 784-798.
    5. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Dejchanchaiwong, Racha & Kumar, Anil & Tekasakul, Perapong, 2019. "Performance and economic analysis of natural convection based rubber smoking room for rubber cooperatives in Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 233-242.
    7. Golzari, Soudabeh & Kasaeian, Alibakhsh & Amidpour, Majid & Nasirivatan, Shahin & Mousavi, Soroush, 2018. "Experimental investigation of the effects of corona wind on the performance of an air-cooled PV/T," Renewable Energy, Elsevier, vol. 127(C), pages 284-297.
    8. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    9. Nikpey, Amir Hossein & Hajizadeh Aghdam, Abolfazl & Hamoud Shaltouki, Sadegh, 2024. "Dynamic simulation and thermoeconomic analysis of a novel indirect hybrid solar dryer," Renewable Energy, Elsevier, vol. 227(C).
    10. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    11. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    12. Samimi-Akhijahani, Hadi & Arabhosseini, Akbar, 2018. "Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system," Renewable Energy, Elsevier, vol. 123(C), pages 428-438.
    13. Abubakar, S. & Umaru, S. & Kaisan, M.U. & Umar, U.A. & Ashok, B. & Nanthagopal, K., 2018. "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage," Renewable Energy, Elsevier, vol. 128(PA), pages 285-298.
    14. Anand, Sumeet & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2020. "CFD supported performance analysis of an innovative biomass dryer," Renewable Energy, Elsevier, vol. 159(C), pages 860-872.
    15. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    16. Karthikeyan, A.K. & Murugavelh, S., 2018. "Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 128(PA), pages 305-312.
    17. Asim Ahmad & Om Prakash & Anil Kumar & Rajeshwari Chatterjee & Shubham Sharma & Vineet Kumar & Kushagra Kulshreshtha & Changhe Li & Elsayed Mohamed Tag Eldin, 2022. "A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying," Energies, MDPI, vol. 15(24), pages 1-42, December.
    18. Ndukwu, M.C. & Onyenwigwe, D. & Abam, F.I. & Eke, A.B. & Dirioha, C., 2020. "Development of a low-cost wind-powered active solar dryer integrated with glycerol as thermal storage," Renewable Energy, Elsevier, vol. 154(C), pages 553-568.
    19. Lakshmi, D.V.N. & Muthukumar, P. & Layek, Apurba & Nayak, Prakash Kumar, 2018. "Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage," Renewable Energy, Elsevier, vol. 120(C), pages 23-34.
    20. Dhiman, Prashant & Thakur, N.S. & Chauhan, S.R., 2012. "Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters," Renewable Energy, Elsevier, vol. 46(C), pages 259-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1193-1200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.