IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp860-872.html
   My bibliography  Save this article

CFD supported performance analysis of an innovative biomass dryer

Author

Listed:
  • Anand, Sumeet
  • Mishra, Dipti Prasad
  • Sarangi, Shailesh Kumar

Abstract

In this work, the thermo-fluid performance of a biomass drying chamber with innovative tray configurations has been numerically investigated by solving the governing equations of mass, momentum, energy, and turbulence using Fluent 17. The effect of tray number, tray length, tray arrangement, and hole arrangement on the tray surface has been examined in detail. An enhancement factor has been presented to account for the heat transfer and the associated pressure drop. The results show that both the heat transfer and the pressure drop increase with an increase in tray number and optimum tray number is decided based on the highest enhancement factor. Six different tray arrangements have been examined and it has been found that alternative packed side and rear-front walls arrangement of trays is most effective from the thermo-fluid performance point of view. Based on the hole arrangement investigation, it has been revealed that compared to the inline hole arrangement, the staggered arrangement resulted in higher heat transfer performance with almost no addition to pressure drop. Correlations have been developed to predict the enhancement factor for different tray lengths, tray numbers, and inline and staggered hole arrangements, which help design an efficient and economic biomass drying chamber.

Suggested Citation

  • Anand, Sumeet & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2020. "CFD supported performance analysis of an innovative biomass dryer," Renewable Energy, Elsevier, vol. 159(C), pages 860-872.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:860-872
    DOI: 10.1016/j.renene.2020.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Ayyappan & K. Mayilsamy, 2012. "Solar tunnel drier with thermal storage for drying of copra," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 8(1), pages 3-13.
    2. Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
    3. Janjai, S. & Esper, A. & Mühlbauer, W., 1994. "A procedure for determining the optimum collector area for a solar paddy drying system," Renewable Energy, Elsevier, vol. 4(4), pages 409-416.
    4. Yahya, M. & Fudholi, Ahmad & Sopian, Kamaruzzaman, 2017. "Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace," Renewable Energy, Elsevier, vol. 105(C), pages 22-29.
    5. Prasad, Jaishree & Vijay, V.K., 2005. "Experimental studies on drying of Zingiber officinale, Curcuma longa l. and Tinospora cordifolia in solar-biomass hybrid drier," Renewable Energy, Elsevier, vol. 30(14), pages 2097-2109.
    6. Morad, M.M. & El-Shazly, M.A. & Wasfy, K.I. & El-Maghawry, Hend A.M., 2017. "Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants," Renewable Energy, Elsevier, vol. 101(C), pages 992-1004.
    7. Sonthikun, Sonthawi & Chairat, Phaochinnawat & Fardsin, Kitti & Kirirat, Pairoj & Kumar, Anil & Tekasakul, Perapong, 2016. "Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: An experimental validation," Renewable Energy, Elsevier, vol. 92(C), pages 185-191.
    8. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 105(C), pages 583-589.
    9. Bala, B.K. & Woods, J.L., 1995. "Optimization of natural-convection, solar drying systems," Energy, Elsevier, vol. 20(4), pages 285-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Yahya, M. & Rachman, Arfidian & Hasibuan, R., 2022. "Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying," Energy, Elsevier, vol. 254(PB).
    3. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    4. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    5. Karthikeyan, A.K. & Murugavelh, S., 2018. "Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 128(PA), pages 305-312.
    6. Asim Ahmad & Om Prakash & Anil Kumar & Rajeshwari Chatterjee & Shubham Sharma & Vineet Kumar & Kushagra Kulshreshtha & Changhe Li & Elsayed Mohamed Tag Eldin, 2022. "A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying," Energies, MDPI, vol. 15(24), pages 1-42, December.
    7. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    8. Hossain, M.A. & Woods, J.L. & Bala, B.K., 2005. "Optimisation of solar tunnel drier for drying of chilli without color loss," Renewable Energy, Elsevier, vol. 30(5), pages 729-742.
    9. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    10. Afshari, Faraz & Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Şahinkesen, İstemihan & Di Nicola, Giovanni, 2021. "Dehumidification of sewage sludge using quonset solar tunnel dryer: An experimental and numerical approach," Renewable Energy, Elsevier, vol. 171(C), pages 784-798.
    11. Simate, I.N, 2003. "Optimization of mixed-mode and indirect-mode natural convection solar dryers," Renewable Energy, Elsevier, vol. 28(3), pages 435-453.
    12. Dejchanchaiwong, Racha & Kumar, Anil & Tekasakul, Perapong, 2019. "Performance and economic analysis of natural convection based rubber smoking room for rubber cooperatives in Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 233-242.
    13. Ekka, Jasinta Poonam & Bala, Krishnendu & Muthukumar, P. & Kanaujiya, Dipak Kumar, 2020. "Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates," Renewable Energy, Elsevier, vol. 152(C), pages 55-66.
    14. Husham Abdulmalek, Shaymaa & Khalaji Assadi, Morteza & Al-Kayiem, Hussain H. & Gitan, Ali Ahmed, 2018. "A comparative analysis on the uniformity enhancement methods of solar thermal drying," Energy, Elsevier, vol. 148(C), pages 1103-1115.
    15. Natarajan, Karunaraja & Thokchom, Subhaschandra Singh & Verma, Tikendra Nath & Nashine, Prerana, 2017. "Convective solar drying of Vitis vinifera &Momordica charantia using thermal storage materials," Renewable Energy, Elsevier, vol. 113(C), pages 1193-1200.
    16. Lakshmi, D.V.N. & Muthukumar, P. & Layek, Apurba & Nayak, Prakash Kumar, 2018. "Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage," Renewable Energy, Elsevier, vol. 120(C), pages 23-34.
    17. Singh, Pushpendra & Shrivastava, Vipin & Kumar, Anil, 2018. "Recent developments in greenhouse solar drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3250-3262.
    18. Sonthikun, Sonthawi & Chairat, Phaochinnawat & Fardsin, Kitti & Kirirat, Pairoj & Kumar, Anil & Tekasakul, Perapong, 2016. "Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: An experimental validation," Renewable Energy, Elsevier, vol. 92(C), pages 185-191.
    19. Youcef-Ali, S. & Desmons, J.Y., 2007. "Influence of the aerothermic parameters and the product quantity on the production capacity of an indirect solar dryer," Renewable Energy, Elsevier, vol. 32(3), pages 496-511.
    20. Tagnamas, Zakaria & Bahammou, Younes & Kouhila, Mounir & Hilali, Soukaina & Idlimam, Ali & Lamharrar, Abdelkader, 2020. "Conservation of Moroccan truffle (Terfezia boudieri) using solar drying method," Renewable Energy, Elsevier, vol. 146(C), pages 16-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:860-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.