IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i3p435-453.html
   My bibliography  Save this article

Optimization of mixed-mode and indirect-mode natural convection solar dryers

Author

Listed:
  • Simate, I.N

Abstract

This paper presents a comparison of optimized mixed-mode and indirect-mode natural convection solar dryers for maize. The mixed-mode and indirect-mode solar drying simulation models were validated against results from a laboratory solar dryer with experiments carried out under a solar simulator at the University of Newcastle upon Tyne, UK. The models are now run under variable solar conditions in order to optimize the dryers and compare their performance. The inputs to the simulation models were Zambian weather conditions and materials. The solar drying simulations are combined with the cost of the dryer materials and a search technique that finds the dryer dimensions at the minimum drying cost. Optimization gave a shorter collector length for the mixed-mode solar dryer (1.8 m) than for the indirect-mode dryer (3.34 m) of the same grain capacity (90 kg). The drying cost, annual cost and initial cost of the mixed-mode dryer are lower than those of the indirect-mode although the quantity of dry grain obtained from the mixed-mode for the whole year is less than for the indirect-mode; the drying costs are 12.76 and 16.05 US$/ton for mixed-mode and indirect-mode dryers, respectively.

Suggested Citation

  • Simate, I.N, 2003. "Optimization of mixed-mode and indirect-mode natural convection solar dryers," Renewable Energy, Elsevier, vol. 28(3), pages 435-453.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:3:p:435-453
    DOI: 10.1016/S0960-1481(02)00041-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102000411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00041-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mumba, J., 1995. "Development of a photovoltaic powered forced circulation grain dryer for use in the tropics," Renewable Energy, Elsevier, vol. 6(7), pages 855-862.
    2. Janjai, S. & Esper, A. & Mühlbauer, W., 1994. "A procedure for determining the optimum collector area for a solar paddy drying system," Renewable Energy, Elsevier, vol. 4(4), pages 409-416.
    3. Mumba, J., 1995. "Economic analysis of a photovoltaic, forced-convection, solar grain drier," Energy, Elsevier, vol. 20(9), pages 923-928.
    4. Bala, B.K. & Woods, J.L., 1995. "Optimization of natural-convection, solar drying systems," Energy, Elsevier, vol. 20(4), pages 285-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain, M.A. & Woods, J.L. & Bala, B.K., 2005. "Optimisation of solar tunnel drier for drying of chilli without color loss," Renewable Energy, Elsevier, vol. 30(5), pages 729-742.
    2. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    3. Ganapathy Ponnambalam Arul & Selvam Thulasi & Pitchaipillai Kumar & Veeranan Arunprasad & Saboor Shaik & Mohamed Abbas & Parvathy Rajendran & Sher Afghan Khan & C. Ahamed Saleel, 2022. "Investigation of Dual–Pass Inclined Oscillating Bed Solar Dryer for Drying of Non-Parboiled Paddy Grains," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    4. Mustayen, A.G.M.B. & Mekhilef, S. & Saidur, R., 2014. "Performance study of different solar dryers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 463-470.
    5. Dejchanchaiwong, Racha & Kumar, Anil & Tekasakul, Perapong, 2019. "Performance and economic analysis of natural convection based rubber smoking room for rubber cooperatives in Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 233-242.
    6. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    7. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    8. Irene Montero & María Teresa Miranda & Francisco José Sepúlveda & José Ignacio Arranz & Carmen Victoria Rojas & Sergio Nogales, 2015. "Solar Dryer Application for Olive Oil Mill Wastes," Energies, MDPI, vol. 8(12), pages 1-15, December.
    9. Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
    10. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.
    11. Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
    12. Hatem Oueslati & Salah Ben Mabrouk & Abdelkader Mami, 2014. "Dynamic modelling and performance study of solar gas tunnel dryer," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 20(2), pages 130-145, March.
    13. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    14. Sekyere, C.K.K. & Forson, F.K. & Adam, F.W., 2016. "Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater," Renewable Energy, Elsevier, vol. 92(C), pages 532-542.
    15. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, M.A. & Woods, J.L. & Bala, B.K., 2005. "Optimisation of solar tunnel drier for drying of chilli without color loss," Renewable Energy, Elsevier, vol. 30(5), pages 729-742.
    2. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    3. Anand, Sumeet & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2020. "CFD supported performance analysis of an innovative biomass dryer," Renewable Energy, Elsevier, vol. 159(C), pages 860-872.
    4. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    5. Youcef-Ali, S. & Desmons, J.Y., 2007. "Influence of the aerothermic parameters and the product quantity on the production capacity of an indirect solar dryer," Renewable Energy, Elsevier, vol. 32(3), pages 496-511.
    6. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    7. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    8. Bala, B.K. & Mondol, M.R.A. & Biswas, B.K. & Das Chowdury, B.L. & Janjai, S., 2003. "Solar drying of pineapple using solar tunnel drier," Renewable Energy, Elsevier, vol. 28(2), pages 183-190.
    9. Román, Franz & Nagle, Marcus & Leis, Hermann & Janjai, Serm & Mahayothee, Busarakorn & Haewsungcharoen, Methinee & Müller, Joachim, 2009. "Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand," Renewable Energy, Elsevier, vol. 34(7), pages 1661-1667.
    10. Kaluri, Ram Satish & Basak, Tanmay, 2010. "Analysis of distributed thermal management policy for energy-efficient processing of materials by natural convection," Energy, Elsevier, vol. 35(12), pages 5093-5107.
    11. Tate, Graham & Mbzibain, Aurelian & Ali, Shaukat, 2012. "A comparison of the drivers influencing farmers' adoption of enterprises associated with renewable energy," Energy Policy, Elsevier, vol. 49(C), pages 400-409.
    12. Sekyere, C.K.K. & Forson, F.K. & Adam, F.W., 2016. "Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater," Renewable Energy, Elsevier, vol. 92(C), pages 532-542.
    13. Smitabhindu, R. & Janjai, S. & Chankong, V., 2008. "Optimization of a solar-assisted drying system for drying bananas," Renewable Energy, Elsevier, vol. 33(7), pages 1523-1531.
    14. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    15. Samimi-Akhijahani, Hadi & Arabhosseini, Akbar, 2018. "Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system," Renewable Energy, Elsevier, vol. 123(C), pages 428-438.
    16. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    17. Mustayen, A.G.M.B. & Mekhilef, S. & Saidur, R., 2014. "Performance study of different solar dryers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 463-470.
    18. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    19. Basak, Tanmay & Anandalakshmi, R. & Kumar, Pushpendra & Roy, S., 2012. "Entropy generation vs energy flow due to natural convection in a trapezoidal cavity with isothermal and non-isothermal hot bottom wall," Energy, Elsevier, vol. 37(1), pages 514-532.
    20. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:3:p:435-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.