Analysis of distributed thermal management policy for energy-efficient processing of materials by natural convection
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2010.08.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bosbach, Johannes & Pennecot, Julien & Wagner, Claus & Raffel, Markus & Lerche, Thomas & Repp, Stefan, 2006. "Experimental and numerical simulations of turbulent ventilation in aircraft cabins," Energy, Elsevier, vol. 31(5), pages 694-705.
- Chen, D.T. & Chaturvedi, S.K. & Mohieldin, T.O., 1994. "An approximate method for calculating laminar natural convective motion in a trombe-wall channel," Energy, Elsevier, vol. 19(2), pages 259-268.
- Barthels, H. & Rehm, W. & Jahn, W., 1991. "Theoretical and experimental investigations into the safety behavior of small HTRs under natural convection conditions," Energy, Elsevier, vol. 16(1), pages 371-380.
- Pangavhane, Dilip R. & Sawhney, R.L. & Sarsavadia, P.N., 2002. "Design, development and performance testing of a new natural convection solar dryer," Energy, Elsevier, vol. 27(6), pages 579-590.
- Elshafei, E.A.M., 2010. "Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins," Energy, Elsevier, vol. 35(7), pages 2870-2877.
- da Silva, A.K. & Lorente, S. & Bejan, A., 2006. "Constructal multi-scale structures for maximal heat transfer density," Energy, Elsevier, vol. 31(5), pages 620-635.
- Kheireddine, A.S. & Sanda, M.Houla & Chaturvedi, S.K. & Mohieldin, T.O., 1997. "Numerical prediction of pressure loss coefficient and induced mass flux for laminal natural convective flow in a vertical channel," Energy, Elsevier, vol. 22(4), pages 413-423.
- Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2010. "Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry," Energy, Elsevier, vol. 35(6), pages 2688-2693.
- Abu-Hijleh, B.A/K & Abu-Qudais, M & Abu Nada, E, 1999. "Numerical prediction of entropy generation due to natural convection from a horizontal cylinder," Energy, Elsevier, vol. 24(4), pages 327-333.
- Bala, B.K. & Woods, J.L., 1995. "Optimization of natural-convection, solar drying systems," Energy, Elsevier, vol. 20(4), pages 285-294.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Biswal, Pratibha & Basak, Tanmay, 2014. "Bejan's heatlines and numerical visualization of convective heat flow in differentially heated enclosures with concave/convex side walls," Energy, Elsevier, vol. 64(C), pages 69-94.
- Saidi, Majid & Karimi, Gholamreza, 2014. "Free convection cooling in modified L-shape enclosures using copper–water nanofluid," Energy, Elsevier, vol. 70(C), pages 251-271.
- Das, Debayan & Lukose, Leo & Basak, Tanmay, 2018. "Role of multiple solar heaters along the walls for the thermal management during natural convection in square and triangular cavities," Renewable Energy, Elsevier, vol. 121(C), pages 205-229.
- Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2011. "Passive heat and moisture removal from a natural vented enclosure with a massive wall," Energy, Elsevier, vol. 36(5), pages 2867-2882.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Basak, Tanmay & Anandalakshmi, R. & Kumar, Pushpendra & Roy, S., 2012. "Entropy generation vs energy flow due to natural convection in a trapezoidal cavity with isothermal and non-isothermal hot bottom wall," Energy, Elsevier, vol. 37(1), pages 514-532.
- Anandalakshmi, R. & Kaluri, Ram Satish & Basak, Tanmay, 2011. "Heatline based thermal management for natural convection within right-angled porous triangular enclosures with various thermal conditions of walls," Energy, Elsevier, vol. 36(8), pages 4879-4896.
- Biswal, Pratibha & Basak, Tanmay, 2014. "Bejan's heatlines and numerical visualization of convective heat flow in differentially heated enclosures with concave/convex side walls," Energy, Elsevier, vol. 64(C), pages 69-94.
- Jain, Dilip & Tewari, Pratibha, 2015. "Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage," Renewable Energy, Elsevier, vol. 80(C), pages 244-250.
- Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2011. "Passive heat and moisture removal from a natural vented enclosure with a massive wall," Energy, Elsevier, vol. 36(5), pages 2867-2882.
- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Sertkaya, Ahmet Ali & Bilir, Şefik & Kargıcı, Suna, 2011. "Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection," Energy, Elsevier, vol. 36(3), pages 1513-1517.
- Qiu, Zhongzhu & Zhao, Xudong & Li, Peng & Zhang, Xingxing & Ali, Samira & Tan, Junyi, 2015. "Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module," Energy, Elsevier, vol. 87(C), pages 686-698.
- Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
- Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
- Ji, Jie & Luo, Chenglong & Chow, Tin-Tai & Sun, Wei & He, Wei, 2011. "Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation," Energy, Elsevier, vol. 36(1), pages 566-574.
- Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.
- Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
- Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
- Baïri, A., 2008. "Transient thermal characteristics of airborne electronic equipment with discrete hot bands in square cavities," Applied Energy, Elsevier, vol. 85(10), pages 951-967, October.
- Jang, Daeseok & Yook, Se-Jin & Lee, Kwan-Soo, 2014. "Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications," Applied Energy, Elsevier, vol. 116(C), pages 260-268.
- Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
- Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
- Bala, B.K. & Mondol, M.R.A. & Biswas, B.K. & Das Chowdury, B.L. & Janjai, S., 2003. "Solar drying of pineapple using solar tunnel drier," Renewable Energy, Elsevier, vol. 28(2), pages 183-190.
- Badescu, Viorel, 2015. "Optimal profile of heat transfer pin fins under technological constraints," Energy, Elsevier, vol. 93(P2), pages 2292-2298.
More about this item
Keywords
Heatlines; Streamlines; Isotherms; Natural convection; Square cavity; Uniform and distributed heating;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5093-5107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.