IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v106y2016icp63-72.html
   My bibliography  Save this article

Rheological and energy transport characteristics of a phase change material slurry

Author

Listed:
  • Zhang, P.
  • Ma, Z.W.
  • Bai, Z.Y.
  • Ye, J.

Abstract

A phase change material slurry – TBAB (tetra-n-butyl ammonium bromide) CHS (clathrate hydrate slurry) has received intensive attractions in recent years due to its dual-function as thermal energy storage and transport media simultaneously in air conditioning and refrigeration applications. In the present study, the rheological characteristics of TBAB CHS were measured using a rheometer at various solid fractions and in a shear rate range of smaller than 1000 s−1. The results indicated that TBAB CHS was a pseudo-plastic non-Newtonian fluid which showed shear-thinning characteristics. The flow behaviour indices and fluid consistencies of type A and type B TBAB CHS were determined based on the power-law fluid model, which showed good consistency with the previous results obtained from the pressure drop measurements in straight tubes. The apparent viscosity of type A TBAB CHS was larger than that of type B TBAB CHS. The obtained apparent viscosities were compared to the calculated results by using the empirical equations, and the reason for the discrepancies was discussed. Based on the obtained rheological characteristics, the pumping power consumption of TBAB CHS as a secondary refrigerant was estimated and compared to that of chilled water at the same cooling capacity. The result showed a drastic reduction of pumping power when using TBAB CHS in lieu of chilled water.

Suggested Citation

  • Zhang, P. & Ma, Z.W. & Bai, Z.Y. & Ye, J., 2016. "Rheological and energy transport characteristics of a phase change material slurry," Energy, Elsevier, vol. 106(C), pages 63-72.
  • Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:63-72
    DOI: 10.1016/j.energy.2016.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Li & Petermann, Marcus & Doetsch, Christian, 2009. "Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications," Energy, Elsevier, vol. 34(9), pages 1145-1155.
    2. Aladag, Bahadir & Halelfadl, Salma & Doner, Nimeti & Maré, Thierry & Duret, Steven & Estellé, Patrice, 2012. "Experimental investigations of the viscosity of nanofluids at low temperatures," Applied Energy, Elsevier, vol. 97(C), pages 876-880.
    3. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2010. "Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry," Energy, Elsevier, vol. 35(6), pages 2688-2693.
    4. Zhang, P. & Ma, Z.W. & Wang, R.Z., 2010. "An overview of phase change material slurries: MPCS and CHS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 598-614, February.
    5. Zhang, P. & Ma, Z.W., 2012. "An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5021-5058.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Babu, Ponnivalavan & Kumar, Sreekala & Tee, Jackson & Linga, Praveen, 2023. "Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid," Energy, Elsevier, vol. 264(C).
    2. Krzysztof Dutkowski & Marcin Kruzel & Bartosz Zajączkowski, 2020. "Determining the Heat of Fusion and Specific Heat of Microencapsulated Phase Change Material Slurry by Thermal Delay Method," Energies, MDPI, vol. 14(1), pages 1-14, December.
    3. Liu, Liu & Zhang, Xiyao & Liang, Haobin & Niu, Jianlei & Wu, Jian-Yong, 2022. "Cooling storage performance of a novel phase change material nano-emulsion for room air-conditioning in a self-designed pilot thermal storage unit," Applied Energy, Elsevier, vol. 308(C).
    4. Pons, Michel & Hoang, Hong-Minh & Dufour, Thomas & Fournaison, Laurence & Delahaye, Anthony, 2018. "Energy analysis of two-phase secondary refrigeration in steady-state operation, part 1: Global optimization and leading parameter," Energy, Elsevier, vol. 161(C), pages 1282-1290.
    5. Krzysztof Dutkowski & Marcin Kruzel, 2023. "The State of the Art on the Flow Characteristic of an Encapsulated Phase-Change Material Slurry," Energies, MDPI, vol. 16(19), pages 1-27, October.
    6. Emiliano Borri & Nan Hua & Adriano Sciacovelli & Dawei Wu & Yulong Ding & Yongliang Li & Vincenza Brancato & Yannan Zhang & Andrea Frazzica & Wenguang Li & Zhibin Yu & Yanio E. Milian & Svetlana Ushak, 2022. "Phase Change Slurries for Cooling and Storage: An Overview of Research Trends and Gaps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    7. Ma, Fei & Zhang, Peng, 2020. "A review of thermo-fluidic performance and application of shellless phase change slurry: Part 2 – Flow and heat transfer characteristics," Energy, Elsevier, vol. 192(C).
    8. Chen, J. & Zhang, P., 2017. "Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media," Applied Energy, Elsevier, vol. 190(C), pages 868-879.
    9. Shi, Quanlin & Qin, Botao & Hao, Yinghao & Li, Hongbiao, 2022. "Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire," Energy, Elsevier, vol. 247(C).
    10. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Kumar, Sreekala & Tee, Jackson & Seo, Yutaek & Linga, Praveen, 2022. "An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: Application for cold storage and transport," Applied Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
    2. Wang, Fangxian & Zhang, Chao & Liu, Jian & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage," Applied Energy, Elsevier, vol. 188(C), pages 97-106.
    3. Ma, Fei & Zhang, Peng, 2019. "A review of thermo-fluidic performance and application of shellless phase change slurry: Part 1 – Preparations, properties and applications," Energy, Elsevier, vol. 189(C).
    4. Shao, Jingjing & Darkwa, Jo & Kokogiannakis, Georgios, 2016. "Development of a novel phase change material emulsion for cooling systems," Renewable Energy, Elsevier, vol. 87(P1), pages 509-516.
    5. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    6. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    7. Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
    8. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    9. Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Kawanami, Tsuyoshi & Togashi, Kenichi & Fumoto, Koji & Hirano, Shigeki & Zhang, Peng & Shirai, Katsuaki & Hirasawa, Shigeki, 2016. "Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media," Energy, Elsevier, vol. 117(P2), pages 562-568.
    11. Ma, Fei & Zhang, Peng, 2020. "A review of thermo-fluidic performance and application of shellless phase change slurry: Part 2 – Flow and heat transfer characteristics," Energy, Elsevier, vol. 192(C).
    12. David Cabaleiro & Samah Hamze & Filippo Agresti & Patrice Estellé & Simona Barison & Laura Fedele & Sergio Bobbo, 2019. "Dynamic Viscosity, Surface Tension and Wetting Behavior Studies of Paraffin–in–Water Nano–Emulsions," Energies, MDPI, vol. 12(17), pages 1-19, August.
    13. Yin, Dezhong & Ma, Li & Liu, Jinjie & Zhang, Qiuyu, 2014. "Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell," Energy, Elsevier, vol. 64(C), pages 575-581.
    14. Wang, Xiaolin & Dennis, Mike, 2016. "Characterisation of thermal properties and charging performance of semi-clathrate hydrates for cold storage applications," Applied Energy, Elsevier, vol. 167(C), pages 59-69.
    15. Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
    16. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    17. Chen, J. & Zhang, P., 2017. "Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media," Applied Energy, Elsevier, vol. 190(C), pages 868-879.
    18. Zhang, P. & Ma, Z.W., 2012. "An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5021-5058.
    19. Zhang, G.H. & Zhao, C.Y., 2011. "Thermal and rheological properties of microencapsulated phase change materials," Renewable Energy, Elsevier, vol. 36(11), pages 2959-2966.
    20. Yu Zheng & Xiaoming Li & Wenjie Zhang & Kuan Wang & Feng Han & Xiaoge Li & Yuqiang Zhao, 2022. "Experimental Study of Phase Change Microcapsule Suspensions Applied in BIPV Construction," Sustainability, MDPI, vol. 14(17), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:63-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.