IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v19y1994i2p259-268.html
   My bibliography  Save this article

An approximate method for calculating laminar natural convective motion in a trombe-wall channel

Author

Listed:
  • Chen, D.T.
  • Chaturvedi, S.K.
  • Mohieldin, T.O.

Abstract

Laminar natural convective motion in a channel formed by differentially heated vertical plates is analyzed. The proposed model combines the momentum-integral equation with the Oseen approximation for convective terms in the energy equation to predict the volumetric flow rate as a function of channel height. A second-order ordinary differential equation for pressure defect in the channel is derived by approximating the axial velocity profile with a fourth-order polynomial. Results obtained from the present model are in good agreement with previously reported results. Consideration of a second-order axial velocity profile in the momentum-integral model leads to closed form solutions that are in good agreement with previously reported results only in the mid to high flowrate regime. In the low flow-rate regime, the second-order model gives results that deviate significantly from results obtained for other models. Neglect of inertia terms in the momentum-integral model leads to a first-order differential equation for the pressure and a closed form solution of the problem. However, this approximation yields results that are good only in the mid to high flowrate regime, while showing deviations from other models in the low flowrate regime. Finally, the present model is also shown to be capable of application to fluids with widely ranging Prandtl numbers.

Suggested Citation

  • Chen, D.T. & Chaturvedi, S.K. & Mohieldin, T.O., 1994. "An approximate method for calculating laminar natural convective motion in a trombe-wall channel," Energy, Elsevier, vol. 19(2), pages 259-268.
  • Handle: RePEc:eee:energy:v:19:y:1994:i:2:p:259-268
    DOI: 10.1016/0360-5442(94)90065-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544294900655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(94)90065-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Bin & Ji, Jie & Yi, Hua, 2008. "The influence of PV coverage ratio on thermal and electrical performance of photovoltaic-Trombe wall," Renewable Energy, Elsevier, vol. 33(11), pages 2491-2498.
    2. Kaluri, Ram Satish & Basak, Tanmay, 2010. "Analysis of distributed thermal management policy for energy-efficient processing of materials by natural convection," Energy, Elsevier, vol. 35(12), pages 5093-5107.
    3. Ana Briga-Sá & Anabela Paiva & João-Carlos Lanzinha & José Boaventura-Cunha & Luís Fernandes, 2021. "Influence of Air Vents Management on Trombe Wall Temperature Fluctuations: An Experimental Analysis under Real Climate Conditions," Energies, MDPI, vol. 14(16), pages 1-22, August.
    4. Ji, Jie & Luo, Chenglong & Chow, Tin-Tai & Sun, Wei & He, Wei, 2011. "Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation," Energy, Elsevier, vol. 36(1), pages 566-574.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:19:y:1994:i:2:p:259-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.