IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i12p12415-14063d60524.html
   My bibliography  Save this article

Solar Dryer Application for Olive Oil Mill Wastes

Author

Listed:
  • Irene Montero

    (Department of Mechanical Engineering, Energy and Materials, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain)

  • María Teresa Miranda

    (Department of Mechanical Engineering, Energy and Materials, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain)

  • Francisco José Sepúlveda

    (Department of Mechanical Engineering, Energy and Materials, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain)

  • José Ignacio Arranz

    (Department of Mechanical Engineering, Energy and Materials, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain)

  • Carmen Victoria Rojas

    (Department of Mechanical Engineering, Energy and Materials, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain)

  • Sergio Nogales

    (Department of Mechanical Engineering, Energy and Materials, Industrial Engineering School, University of Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain)

Abstract

Global waste production has raised recently due to numerous agricultural and industrial activities. Among other actions devoted to waste reduction, revaluation seems to be the most advantageous one from an environmental and economic point of view. In the olive oil sector, by-product management (namely olive pomace, olive mill wastewater, and sludge residue) poses serious problems for companies, with the energy use of these wastes being a feasible option to solve these problems. Due to their high moisture content, drying constitutes the main stage for a possible bio-fuel conversion. This research work deals with the analysis of drying for the three main wastes from olive oil by using a prototype dryer. This equipment has different working regimes depending on the kind of convection (natural or forced for passive and active mode, respectively), the incidence of solar radiation on the product (indirect or mixed type) and the use of an additional system for energy supply (hybrid type). From the results, it could be said that all the wastes were suitable for solar drying. However, drying conditions were different for each case. Olive pomace and olive mill wastewater showed promising results for solar drying application in mixed active mode. Concerning sludge residue, its special physical structure could employ the use of turners for drying, in order to improve heat transfer to the product. Moreover, hybrid active mode enabled a considerable reduction in drying time, being an aspect to take into account for its use during low solar radiation or at night time.

Suggested Citation

  • Irene Montero & María Teresa Miranda & Francisco José Sepúlveda & José Ignacio Arranz & Carmen Victoria Rojas & Sergio Nogales, 2015. "Solar Dryer Application for Olive Oil Mill Wastes," Energies, MDPI, vol. 8(12), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12415-14063:d:60524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/12/12415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/12/12415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    2. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    3. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    4. Simate, I.N, 2003. "Optimization of mixed-mode and indirect-mode natural convection solar dryers," Renewable Energy, Elsevier, vol. 28(3), pages 435-453.
    5. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & El-Gohary, H.G., 2002. "Empirical correlations for drying kinetics of some fruits and vegetables," Energy, Elsevier, vol. 27(9), pages 845-859.
    6. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Álvarez-Sánchez & Jassón Flores-Prieto & Octavio García-Valladares, 2021. "Annual Thermal Performance of an Industrial Hybrid Direct–Indirect Solar Air Heating System for Drying Applications in Morelos-México," Energies, MDPI, vol. 14(17), pages 1-20, August.
    2. Zhongting Hu & Sheng Zhang & Wenfeng Chu & Wei He & Cairui Yu & Hancheng Yu, 2020. "Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry," Energies, MDPI, vol. 13(17), pages 1-16, August.
    3. Tobias Zimmer & Andreas Rudi & Simon Glöser-Chahoud & Frank Schultmann, 2022. "Techno-Economic Analysis of Intermediate Pyrolysis with Solar Drying: A Chilean Case Study," Energies, MDPI, vol. 15(6), pages 1-16, March.
    4. Mejdi Jeguirim & Patrick Dutournié & Antonis A. Zorpas & Lionel Limousy, 2017. "Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source and Bio-Fertilizer—Part 1. The Drying Kinetics," Energies, MDPI, vol. 10(9), pages 1-16, September.
    5. Abderrahman, Mellalou & Abdelaziz, Bacaoui & Abdelkader, Outzourhit, 2022. "Thermal performances and kinetics analyses of greenhouse hybrid drying of two-phase olive pomace: Effect of thin layer thickness," Renewable Energy, Elsevier, vol. 199(C), pages 407-418.
    6. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar process heat in industrial systems – A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2270-2286.
    7. Gómez-de la Cruz, Francisco J. & Palomar-Carnicero, José M. & Hernández-Escobedo, Quetzalcoatl & Cruz-Peragón, Fernando, 2020. "Determination of the drying rate and effective diffusivity coefficients during convective drying of two-phase olive mill waste at rotary dryers drying conditions for their application," Renewable Energy, Elsevier, vol. 153(C), pages 900-910.
    8. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    2. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    3. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    4. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    6. Yataganbaba, Alptug & Kurtbaş, İrfan, 2016. "A scientific approach with bibliometric analysis related to brick and tile drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 206-224.
    7. Mustayen, A.G.M.B. & Mekhilef, S. & Saidur, R., 2014. "Performance study of different solar dryers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 463-470.
    8. Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
    9. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    10. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    11. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    12. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    13. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
    14. Desikan Ramesh & Mohanrangan Chandrasekaran & Raga Palanisamy Soundararajan & Paravaikkarasu Pillai Subramanian & Vijayakumar Palled & Deivasigamani Praveen Kumar, 2022. "Solar-Powered Plant Protection Equipment: Perspective and Prospects," Energies, MDPI, vol. 15(19), pages 1-21, October.
    15. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    16. Farjana, Shahjadi Hisan & Huda, Nazmul & Mahmud, M.A. Parvez & Saidur, R., 2018. "Solar industrial process heating systems in operation – Current SHIP plants and future prospects in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 409-419.
    17. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    18. Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
    19. Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
    20. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12415-14063:d:60524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.