Thermal performances and kinetics analyses of greenhouse hybrid drying of two-phase olive pomace: Effect of thin layer thickness
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.09.012
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Irene Montero & María Teresa Miranda & Francisco José Sepúlveda & José Ignacio Arranz & Carmen Victoria Rojas & Sergio Nogales, 2015. "Solar Dryer Application for Olive Oil Mill Wastes," Energies, MDPI, vol. 8(12), pages 1-15, December.
- Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
- Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.
- Prakash, Om & Kumar, Anil, 2014. "Solar greenhouse drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 905-910.
- Koukouch, Abdelghani & Idlimam, Ali & Asbik, Mohamed & Sarh, Brahim & Izrar, Boujemaa & Bostyn, Stéphane & Bah, Abdellah & Ansari, Omar & Zegaoui, Omar & Amine, Amina, 2017. "Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste," Renewable Energy, Elsevier, vol. 101(C), pages 565-574.
- Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Isaac, Pilatowsky Figueroa & Rogelio, Brito Orosco, 2020. "Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum)," Renewable Energy, Elsevier, vol. 147(P1), pages 845-855.
- Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
- Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
- Benlioğlu, Muhammet Mustafa & Karaağaç, Mehmet Onur & Ergün, Alper & Ceylan, İlhan & Ali, İsmail Hamad Guma, 2023. "A detailed analysis of a novel auto-controlled solar drying system combined with thermal energy storage concentrated solar air heater (CSAC) and concentrated photovoltaic/thermal (CPV/T)," Renewable Energy, Elsevier, vol. 211(C), pages 420-433.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
- Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
- Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
- Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
- Badaoui, Ouassila & Hanini, Salah & Djebli, Ahmed & Haddad, Brahim & Benhamou, Amina, 2019. "Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models," Renewable Energy, Elsevier, vol. 133(C), pages 144-155.
- Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Kumar, Anil & Bensaci, Cheyma & Xiao, Hong-Wei, 2022. "Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste," Energy, Elsevier, vol. 243(C).
- Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
- Sangamithra, A. & Swamy, Gabriela John & Prema, R. Sorna & Priyavarshini, R. & Chandrasekar, V. & Sasikala, S., 2014. "An overview of a polyhouse dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 902-910.
- Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
- Prakash, Om & Laguri, Vinod & Pandey, Anukul & Kumar, Anil & Kumar, Arbind, 2016. "Review on various modelling techniques for the solar dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 396-417.
- Mejdi Jeguirim & Patrick Dutournié & Antonis A. Zorpas & Lionel Limousy, 2017. "Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source and Bio-Fertilizer—Part 1. The Drying Kinetics," Energies, MDPI, vol. 10(9), pages 1-16, September.
- Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
- Yazici, Mesut & Kose, Ramazan & Acer, Semra Durmus, 2025. "Investigation of the Comparative okra drying performance of a geothermal and solar hybrid forced convection indirect type cabinet dryer," Renewable Energy, Elsevier, vol. 239(C).
- Tugce Ozsan Kilic & Ismail Boyar & Cuneyt Dincer & Can Ertekin & Ahmet Naci Onus, 2023. "Effects of Different Osmotic Pre-Treatments on the Drying Characteristics, Modeling and Physicochemical Properties of Momordica charantia L. Slices," Agriculture, MDPI, vol. 13(10), pages 1-21, September.
- El-Sebaey, Mahmoud S., 2024. "Proposing novel approach for indirect solar dryer integrated with active-fan and passive-chimney: An experimental and analytical investigation," Energy, Elsevier, vol. 304(C).
- Asim Ahmad & Om Prakash & Shailesh Kumar Sarangi & Prashant Singh Chauhan & Rajeshwari Chatterjee & Shubham Sharma & Raman Kumar & Sayed M. Tag & Abhinav Kumar & Bashir Salah & Syed Sajid Ullah, 2023. "Thermal and CFD Analyses of Sustainable Heat Storage-Based Passive Greenhouse Dryer Operating in No-Load Condition," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
- Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
- Khaled A. Metwally & Awad Ali Tayoush Oraiath & I. M. Elzein & Tamer M. El-Messery & Claude Nyambe & Mohamed Metwally Mahmoud & Mohamed Anwer Abdeen & Ahmad A. Telba & Usama Khaled & Abderrahmane Bero, 2024. "The Mathematical Modeling, Diffusivity, Energy, and Enviro-Economic Analysis (MD3E) of an Automatic Solar Dryer for Drying Date Fruits," Sustainability, MDPI, vol. 16(8), pages 1-29, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:407-418. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp407-418.html