IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221030139.html
   My bibliography  Save this article

Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste

Author

Listed:
  • Hadibi, Tarik
  • Boubekri, Abdelghani
  • Mennouche, Djamel
  • Benhamza, Abderrahmane
  • Kumar, Anil
  • Bensaci, Cheyma
  • Xiao, Hong-Wei

Abstract

In order to explore the feasibility of suitable drying technology of tomato-paste, four solar drying methods were employed, namely (i) Basic Solar-drying Mode (SDM), (ii) Solar-Geothermal Drying (SGD), (iii) Convective Ventilated Solar Drying (CVD), and (iv) Combination of Ventilation and Geothermal Drying (VHD) and their effect on exergy efficiency, economic and quality attributes were investigated. Results showed that the drying time using different drying methods was 10, 9, 8, and 4.5 h for SDM, SGD, CVD, and VHD, respectively. Proposed model could better describe tomato paste drying behavior among eight tested mathematical models. Highest drying efficiency and specific energy consumption were observed for VHD method as 68.27% and 3.21 kWh/kg, respectively. Highest exergy efficiency was recorded for SGD and VHD as 54%. Payback period values were 0.28, 0.325, 0.3, and 0.169 years for SDM, SGD, CVD, and VHD, respectively. Color analysis revealed that CVD method was more suitable with the lowest total color change of 22.41 and highest brightness of the red color of 1.34. SGD method preserved 73.85% and 59.42% of phenol and flavonoid compounds, respectively, while VHD method preserve the highest flavonoid compounds as 82.24% compared to fresh sample. Geothermal energy combined with ventilation is recommended as a suitable drying method for tomato paste in terms of drying time, energy, exergy efficiency, economic, and quality attribute.

Suggested Citation

  • Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Kumar, Anil & Bensaci, Cheyma & Xiao, Hong-Wei, 2022. "Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221030139
    DOI: 10.1016/j.energy.2021.122764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ELkhadraoui, Aymen & Kooli, Sami & Hamdi, Ilhem & Farhat, Abdelhamid, 2015. "Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape," Renewable Energy, Elsevier, vol. 77(C), pages 1-8.
    2. Koukouch, Abdelghani & Idlimam, Ali & Asbik, Mohamed & Sarh, Brahim & Izrar, Boujemaa & Bostyn, Stéphane & Bah, Abdellah & Ansari, Omar & Zegaoui, Omar & Amine, Amina, 2017. "Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste," Renewable Energy, Elsevier, vol. 101(C), pages 565-574.
    3. Ortiz-Rodríguez, N.M. & Marín-Camacho, J.F. & González, A. Llamas- & García-Valladares, O., 2021. "Drying kinetics of natural rubber sheets under two solar thermal drying systems," Renewable Energy, Elsevier, vol. 165(P1), pages 438-454.
    4. Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
    5. Benhamza, Abderrahmane & Boubekri, Abdelghani & Atia, Abdelmalek & El Ferouali, Hicham & Hadibi, Tarik & Arıcı, Müslüm & Abdenouri, Naji, 2021. "Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential," Renewable Energy, Elsevier, vol. 169(C), pages 1190-1209.
    6. Yahya, M. & Fudholi, Ahmad & Sopian, Kamaruzzaman, 2017. "Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace," Renewable Energy, Elsevier, vol. 105(C), pages 22-29.
    7. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    8. Dissa, A.O. & Bathiebo, D.J. & Desmorieux, H. & Coulibaly, O. & Koulidiati, J., 2011. "Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes," Energy, Elsevier, vol. 36(5), pages 2517-2527.
    9. Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Abdenouri, Naji, 2021. "3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer," Renewable Energy, Elsevier, vol. 170(C), pages 1052-1069.
    10. Mewa, Eunice A. & Okoth, Michael W. & Kunyanga, Catherine N. & Rugiri, Musa N., 2019. "Experimental evaluation of beef drying kinetics in a solar tunnel dryer," Renewable Energy, Elsevier, vol. 139(C), pages 235-241.
    11. Azam, Mostafa M. & Eltawil, Mohamed A. & Amer, Baher M.A., 2020. "Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Xing, Tianyu & Luo, Xi & Li, Ming & Wang, Yunfeng & Deng, Zhihan & Yao, Muchi & Zhang, Wenxiang & Zhang, Zude & Gao, Meng, 2023. "Study on drying characteristics of Gentiana macrophylla under the interaction of temperature and relative humidity," Energy, Elsevier, vol. 273(C).
    3. Li, Mengjie & Liu, Ming & Xu, Can & Wang, Jinshi & Yan, Junjie, 2023. "Thermodynamic and sensitivity analyses on drying subprocesses of various evaporative dryers: A comparative study," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    3. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    4. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    5. Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
    6. Ndukwu, Macmanus Chinenye & Akpan, Godwin & Okeahialam, Azubuike N. & Umoh, John D. & Ubuoh, Emmanuel A. & Benjamine, Uchechukwu G. & Nwachukwu, Chris & Kalu, Confidence A. & Mbanasor, Jude & Wu, Hong, 2023. "A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover," Renewable Energy, Elsevier, vol. 216(C).
    7. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    8. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    9. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    10. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    11. Lahnine, Lamyae & Idlimam, Ali & Mostafa Mahrouz, & Mghazli, Safa & Hidar, Nadia & Hanine, Hafida & Koutit, Abbes, 2016. "Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process," Renewable Energy, Elsevier, vol. 94(C), pages 72-80.
    12. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    13. Samimi-Akhijahani, Hadi & Arabhosseini, Akbar, 2018. "Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system," Renewable Energy, Elsevier, vol. 123(C), pages 428-438.
    14. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    15. Philip, Nadiya & Duraipandi, Sruthi & Sreekumar, A., 2022. "Techno-economic analysis of greenhouse solar dryer for drying agricultural produce," Renewable Energy, Elsevier, vol. 199(C), pages 613-627.
    16. Abderrahman, Mellalou & Abdelaziz, Bacaoui & Abdelkader, Outzourhit, 2022. "Thermal performances and kinetics analyses of greenhouse hybrid drying of two-phase olive pomace: Effect of thin layer thickness," Renewable Energy, Elsevier, vol. 199(C), pages 407-418.
    17. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer," Renewable Energy, Elsevier, vol. 105(C), pages 583-589.
    18. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    19. Balbay, Asim & Kaya, Yilmaz & Sahin, Omer, 2012. "Drying of black cumin (Nigella sativa) in a microwave assisted drying system and modeling using extreme learning machine," Energy, Elsevier, vol. 44(1), pages 352-357.
    20. Li, Mengjie & Liu, Ming & Xu, Can & Wang, Jinshi & Yan, Junjie, 2023. "Thermodynamic and sensitivity analyses on drying subprocesses of various evaporative dryers: A comparative study," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221030139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.