A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.119076
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S. Kesavan & T.V. Arjunan, 2018. "Experimental study on triple pass solar air heater with thermal energy storage for drying mint leaves," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 14(1), pages 34-48.
- Dissa, A.O. & Bathiebo, D.J. & Desmorieux, H. & Coulibaly, O. & Koulidiati, J., 2011. "Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes," Energy, Elsevier, vol. 36(5), pages 2517-2527.
- ELkhadraoui, Aymen & Kooli, Sami & Hamdi, Ilhem & Farhat, Abdelhamid, 2015. "Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape," Renewable Energy, Elsevier, vol. 77(C), pages 1-8.
- Chuanqi Xie & Xiaoli Li & Yongni Shao & Yong He, 2014. "Color Measurement of Tea Leaves at Different Drying Periods Using Hyperspectral Imaging Technique," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-15, December.
- Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Isaac, Pilatowsky Figueroa & Rogelio, Brito Orosco, 2020. "Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum)," Renewable Energy, Elsevier, vol. 147(P1), pages 845-855.
- Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
- Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
- Philip, Nadiya & Duraipandi, Sruthi & Sreekumar, A., 2022. "Techno-economic analysis of greenhouse solar dryer for drying agricultural produce," Renewable Energy, Elsevier, vol. 199(C), pages 613-627.
- Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
- Forson, F.K. & Nazha, M.A.A. & Akuffo, F.O. & Rajakaruna, H., 2007. "Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb," Renewable Energy, Elsevier, vol. 32(14), pages 2306-2319.
- Lakshmi, D.V.N. & Muthukumar, P. & Layek, Apurba & Nayak, Prakash Kumar, 2018. "Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage," Renewable Energy, Elsevier, vol. 120(C), pages 23-34.
- Abubakar, S. & Umaru, S. & Kaisan, M.U. & Umar, U.A. & Ashok, B. & Nanthagopal, K., 2018. "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage," Renewable Energy, Elsevier, vol. 128(PA), pages 285-298.
- Badaoui, Ouassila & Hanini, Salah & Djebli, Ahmed & Haddad, Brahim & Benhamou, Amina, 2019. "Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models," Renewable Energy, Elsevier, vol. 133(C), pages 144-155.
- Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
- Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
- Garg, H.P. & Rani, U., 1980. "Loss coefficients from solar flat-plate collectors," Applied Energy, Elsevier, vol. 7(1-3), pages 109-117, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anuma, Onwuka & Ndukwu, Macmanus Chinenye & Usoh, Godwin & Sam, Emmanuel Okon & Akpan, Godwin & Oriaku, Linus & Orji, Francis & Akuwueke, Leonard & Ben, Augustine Edet & Bekkioui, Naoual & Simo-Tagne,, 2024. "Energy and exergy analysis of a natural convection solar greenhouse drier with insulated opaque walls for drying aromatic yellow pepper," Renewable Energy, Elsevier, vol. 233(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
- Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Isaac, Pilatowsky Figueroa & Rogelio, Brito Orosco, 2020. "Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum)," Renewable Energy, Elsevier, vol. 147(P1), pages 845-855.
- Abubakar, S. & Umaru, S. & Kaisan, M.U. & Umar, U.A. & Ashok, B. & Nanthagopal, K., 2018. "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage," Renewable Energy, Elsevier, vol. 128(PA), pages 285-298.
- Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
- Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
- Lakshmi, D.V.N. & Muthukumar, P. & Nayak, Prakash Kumar, 2021. "Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper," Renewable Energy, Elsevier, vol. 167(C), pages 728-739.
- Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
- Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
- Dake, Rock Aymar & N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric & Lèye, Babacar & Ouédraogo, Igor W.K., 2021. "A review on the use of sorption materials in solar dryers," Renewable Energy, Elsevier, vol. 175(C), pages 965-979.
- Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
- Benlioğlu, Muhammet Mustafa & Karaağaç, Mehmet Onur & Ergün, Alper & Ceylan, İlhan & Ali, İsmail Hamad Guma, 2023. "A detailed analysis of a novel auto-controlled solar drying system combined with thermal energy storage concentrated solar air heater (CSAC) and concentrated photovoltaic/thermal (CPV/T)," Renewable Energy, Elsevier, vol. 211(C), pages 420-433.
- Wengang Hao & Shuonan Liu & Baoqi Mi & Yanhua Lai, 2020. "Mathematical Modeling and Performance Analysis of a New Hybrid Solar Dryer of Lemon Slices for Controlling Drying Temperature," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
- Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
- Arun, K.R. & Kunal, G. & Srinivas, M. & Kumar, C.S. Sujith & Mohanraj, M. & Jayaraj, S., 2020. "Drying of untreated Musa nendra and Momordica charantia in a forced convection solar cabinet dryer with thermal storage," Energy, Elsevier, vol. 192(C).
- Efendi, Mohamad, 2024. "Influence of glazing type on the drying kinetics and thermal performance of indirect solar dryer for jelly candy," Renewable Energy, Elsevier, vol. 231(C).
- Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
- Sivakumar, S. & Velmurugan, C. & Dhas, D.S. Ebenezer Jacob & Solomon, A. Brusly & Dev Wins, K. Leo, 2020. "Effect of nano cupric oxide coating on the forced convection performance of a mixed-mode flat plate solar dryer," Renewable Energy, Elsevier, vol. 155(C), pages 1165-1172.
More about this item
Keywords
Solar collector; Green leaves; Chlorophyll; Drying; Colour wavelength;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009904. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.