IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics1364032124009262.html
   My bibliography  Save this article

Innovative green technology: Pulse cycle vacuum drying with carbon crystal heating poised to supplant conventional vacuum drying methods

Author

Listed:
  • Zhang, Jing-Shou
  • Xiao, Hong-Mei
  • Orsat, Valérie
  • Raghavan, G.S.V.
  • Torki, Mehdi
  • Wang, Haibin
  • Wang, Hui

Abstract

Drying plays a crucial role in ensuring global food security by reducing the moisture content to ensure safe storage of agri-food products. This study aims to develop a carbon crystal heating - pulsed cycle vacuum drying (CH-PVD) equipment and improve its performance using alternating vacuum - normal pressure patterns and Carbon crystal infrared plates. The developed dryer was used to dehydrate garlic at 60–75 °C and compared with vacuum drying (VD) and vacuum freeze drying (VFD). At 65 °C, compared with VD, the developed dryer reduced drying time and carbon footprint by 32.55 % and 41.56 % respectively, enhanced energy efficiency by 68.10 %. The quality of the dried garlic slices obtained by CH-PVD was better than that of VD while it was worse than that obtained with VFD. However, the rehydration ratio of the dried garlic slices obtained by CH-PVD was 89.84 % higher than that of VFD. The energy analysis of the three dryers revealed that the vacuum pump was the most energy consuming component in CH-PVD and VD, while the cooling unit was the most energy consuming component in VFD. At the same drying temperature, heating in VD accounted for 48.30 % of the total energy consumption, while heating in CH-PVD accounted for only 5.02 %. Compared with VD and VFD, CH-PVD could effectively reduce greenhouse gas emissions and had a shorter simple payback period (0.38–0.81 years). Based on the results of this study, it can be concluded that the CH-PVD is a promising drying technology for potential application in the food industry.

Suggested Citation

  • Zhang, Jing-Shou & Xiao, Hong-Mei & Orsat, Valérie & Raghavan, G.S.V. & Torki, Mehdi & Wang, Haibin & Wang, Hui, 2025. "Innovative green technology: Pulse cycle vacuum drying with carbon crystal heating poised to supplant conventional vacuum drying methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009262
    DOI: 10.1016/j.rser.2024.115200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    2. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    3. Motevali, Ali & Minaei, Saeid & Khoshtaghaza, Mohammad Hadi & Amirnejat, Hamed, 2011. "Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices," Energy, Elsevier, vol. 36(11), pages 6433-6441.
    4. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    5. Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Kumar, Anil & Bensaci, Cheyma & Xiao, Hong-Wei, 2022. "Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste," Energy, Elsevier, vol. 243(C).
    7. Darvishi, Hosain & Khodaei, Jalal & Behroozi-Khazaei, Nasser & Salami, Payman & Akhijahani, Hadi Samimi, 2023. "Greenhouse gas emission reduction potential, energy and exergy analysis of combined microwave-convective dryer," Energy, Elsevier, vol. 285(C).
    8. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    4. Hadibi, Tarik & Mennouche, Djamel & Boubekri, Abdelghani & Chouicha, Samira & Arıcı, Müslüm & Yunfeng, Wang & Ming, Li & Fang-ling, Fan, 2023. "Drying characteristic, sustainability, and 4E (energy, exergy, and enviro-economic) analysis of dried date fruits using indirect solar-electric dryer: An experimental investigation," Renewable Energy, Elsevier, vol. 218(C).
    5. Darvishi, Hosain & Azadbakht, Mohsen & Noralahi, Bashir, 2018. "Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation," Renewable Energy, Elsevier, vol. 120(C), pages 201-208.
    6. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
    7. Juan Manuel Madrid-Solórzano & Jorge Luis García-Alcaraz & Eduardo Martínez Cámara & Julio Blanco Fernández & Emilio Jiménez Macías, 2022. "Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    8. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    9. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Daliran, Ali & Taki, Morteza & Marzban, Afshin & Rahnama, Majid & Farhadi, Rouhollah, 2025. "Performance evaluation of greenhouse solar dryer: Energy-exergy analysis, CFD simulation and eco-environmental assessment," Renewable Energy, Elsevier, vol. 238(C).
    11. Lichun Zhu & Xinyu Ji & Junzhe Gu & Xuetao Zhang & Mengqing Li & Qian Zhang & Xuhai Yang & Zhihua Geng, 2024. "Staged Temperature- and Humidity-Controlled Combined Infrared Hot-Air Drying (TH-IRHAD) of Sea Buckthorn Reduces Drying Time, Energy Consumption, and Browning," Agriculture, MDPI, vol. 14(5), pages 1-22, May.
    12. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    14. Angelo Maiorino & Adrián Mota-Babiloni & Fabio Petruzziello & Manuel Gesù Del Duca & Andrea Ariano & Ciro Aprea, 2022. "A Comprehensive Energy Model for an Optimal Design of a Hybrid Refrigerated Van," Energies, MDPI, vol. 15(13), pages 1-23, July.
    15. Caglayan, Hasan & Caliskan, Hakan, 2017. "Sustainability assessment of heat exchanger units for spray dryers," Energy, Elsevier, vol. 124(C), pages 741-751.
    16. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    17. Prakash, R. & Gnanasekaran, Arulmurugan & Rengasamy, Marimuthu & Rajaram, Kamatchi, 2025. "A review on recent developments in natural convective solar dryer for agricultural products: Methods, collector design, influencing factors, performance and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    18. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    19. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Sidhartha Harichandan & Rohit Bansal & Marriyappan Sivagnanam Balathanigaimani, 2023. "Hydrogen economy in India: A status review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    20. Kristiāna Dolge & Dagnija Blumberga, 2021. "Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis," Energies, MDPI, vol. 14(23), pages 1-23, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124009262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.