IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v229y2024ics0960148124008395.html
   My bibliography  Save this article

Experimental and simulation study on the performance of a solar assisted multi-source heat pump drying system in Zhengzhou area

Author

Listed:
  • Hou, Feng
  • He, Ting
  • Lu, Yan
  • Sun, Hongchuang
  • Li, Yawei
  • Yuan, Pei

Abstract

Zhengzhou of Henan province is an important agricultural production base. To improve the performance of the combined drying system and promote the development of agricultural products in Zhengzhou area, a solar assisted multi-source heat pump (SMSHP) drying system was proposed based on a traditional solar assisted air source heat pump (SASHP) drying system. The simulation models were developed for the air source heat pump (ASHP), SASHP, and SMSHP drying system respectively. The coefficient of performance, energy consumption and specific moisture extraction rate of the drying systems under different seasons were analyzed. Moreover, to validate the simulation models, an experimental platform of the combined drying system was designed and set up, and the experimental tests were carried out on the ASHP, SASHP, and SMSHP drying system. The simulation results revealed that the SMSHP drying system had lower energy consumption, higher coefficient of performance and specific moisture extraction rate than that of the SASHP drying system. The most significant performance enhancement was observed in spring, where the SMSHP system demonstrated a 22.69 % increase in coefficient of performance, a 19.2 % increase in specific moisture extraction rate, and a 16.11 % decrease in energy consumption compared to the SASHP drying system. Comparing with the experimental data, the simulation model errors of the energy consumption, coefficient of performance, and specific moisture extraction rate of the SMSHP drying system were 3.19 %, 0.28 %, and 2.27 %, respectively. Therefore, the accuracy of the simulation results was confirmed. To better calculate the heat provided by the solar collection system, the concept of the tank heating guarantee rate was first introduced, and it was found to be more scientific than the solar energy guarantee rate. At last, The economic and environmental benefit of the drying systems were analyzed during the life cycle, and the SMSHP drying system exhibited better comprehensive performance than the SASHP drying system. This paper provides valuable insights into the comprehensive utilization of solar energy and the control logic of solar assisted air source heat pump combined drying system under different seasons.

Suggested Citation

  • Hou, Feng & He, Ting & Lu, Yan & Sun, Hongchuang & Li, Yawei & Yuan, Pei, 2024. "Experimental and simulation study on the performance of a solar assisted multi-source heat pump drying system in Zhengzhou area," Renewable Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008395
    DOI: 10.1016/j.renene.2024.120771
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chinnasamy, Subramaniyan & Arunachalam, Amarkarthik, 2023. "Experimental investigation on direct expansion solar-air source heat pump for water heating application," Renewable Energy, Elsevier, vol. 202(C), pages 222-233.
    2. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
    3. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2016. "Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump," Renewable Energy, Elsevier, vol. 93(C), pages 280-290.
    4. Zhang, Shaoliang & Liu, Shuli & Shen, Yongliang & Shukla, Ashish & Mazhar, Abdur Rehman & Chen, Tingsen, 2024. "Critical review of solar-assisted air source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.
    6. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    7. Xing, Tianyu & Luo, Xi & Li, Ming & Wang, Yunfeng & Deng, Zhihan & Yao, Muchi & Zhang, Wenxiang & Zhang, Zude & Gao, Meng, 2023. "Study on drying characteristics of Gentiana macrophylla under the interaction of temperature and relative humidity," Energy, Elsevier, vol. 273(C).
    8. Hadibi, Tarik & Boubekri, Abdelghani & Mennouche, Djamel & Benhamza, Abderrahmane & Kumar, Anil & Bensaci, Cheyma & Xiao, Hong-Wei, 2022. "Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste," Energy, Elsevier, vol. 243(C).
    9. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    10. Gao, Jinshuang & Li, Sheng & Wu, Fan & Jiang, Long & Zhao, Yazhou & Zhang, Xuejun, 2024. "Study on efficient heating method by solar coupled air source heat pump system with phase change heat storage in severe cold region," Applied Energy, Elsevier, vol. 367(C).
    11. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    12. Zhang, Tianhu & Wang, Fuxi & Gao, Yi & Liu, Yuanjun & Guo, Qiang & Zhao, Qingxin, 2023. "Optimization of a solar-air source heat pump system in the high-cold and high-altitude area of China," Energy, Elsevier, vol. 268(C).
    13. Yuan, Yuejin & Ma, Kaikun & Xu, Yingying & Yang, LiJia & Li, Yan & Lin, Xi & Yuan, Yueding, 2022. "Research on operation performance of multi-heat source complementary system of combined drying based on TRNSYS," Renewable Energy, Elsevier, vol. 192(C), pages 769-783.
    14. Xu, Bo & Wang, Dengyun & Li, Zhaohai & Chen, Zhenqian, 2021. "Drying and dynamic performance of well-adapted solar assisted heat pump drying system," Renewable Energy, Elsevier, vol. 164(C), pages 1290-1305.
    15. Shan, M. & Yu, T. & Yang, X., 2016. "Assessment of an integrated active solar and air-source heat pump water heating system operated within a passive house in a cold climate zone," Renewable Energy, Elsevier, vol. 87(P3), pages 1059-1066.
    16. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
    2. Chi, Xiang & Tang, Sai & Song, Xiaoxue & Rahimi, Sohrab & Ren, Zechun & Han, Guangping & Shi, Sheldon Q. & Cheng, Wanli & Avramidis, Stavros, 2023. "Energy and quality analysis of forced convection air-energy assisted solar timber drying," Energy, Elsevier, vol. 283(C).
    3. Zhang, Shaoliang & Liu, Shuli & Shen, Yongliang & Shukla, Ashish & Mazhar, Abdur Rehman & Chen, Tingsen, 2024. "Critical review of solar-assisted air source heat pump in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Zou, Lingeng & Liu, Ye & Yu, Jianlin, 2023. "Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle," Renewable Energy, Elsevier, vol. 217(C).
    5. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    6. Jiang, Yan & Zhang, Huan & Wang, Yeming & Wang, Yaran & Liu, Minzhang & You, Shijun & Wu, Zhangxiang & Fan, Man & Wei, Shen, 2022. "Research on the operation strategies of the solar assisted heat pump with triangular solar air collector," Energy, Elsevier, vol. 246(C).
    7. Yu, Mengqi & Zou, Lingeng & Yu, Jianlin, 2024. "Experimental study on effects of compressor speed on a heat pump dryer system with auxiliary solar source," Renewable Energy, Elsevier, vol. 228(C).
    8. Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).
    9. Atalay, Halil & Tunçkal, Cüneyt & Türkdoğan, Sunay & Direk, Mehmet, 2024. "Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer," Renewable Energy, Elsevier, vol. 225(C).
    10. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
    11. Benlioğlu, Muhammet Mustafa & Karaağaç, Mehmet Onur & Ergün, Alper & Ceylan, İlhan & Ali, İsmail Hamad Guma, 2023. "A detailed analysis of a novel auto-controlled solar drying system combined with thermal energy storage concentrated solar air heater (CSAC) and concentrated photovoltaic/thermal (CPV/T)," Renewable Energy, Elsevier, vol. 211(C), pages 420-433.
    12. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    13. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong, 2023. "Performance improvement and comparison analysis of the hybrid concentrated dual-source heat pump system regarding proper throttling process," Renewable Energy, Elsevier, vol. 206(C), pages 24-38.
    14. Li, Mengjie & Liu, Ming & Xu, Can & Wang, Jinshi & Yan, Junjie, 2023. "Thermodynamic and sensitivity analyses on drying subprocesses of various evaporative dryers: A comparative study," Energy, Elsevier, vol. 284(C).
    15. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    16. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    17. Sun, Guoxin & Yu, Yongheng & Yu, Qihui & Tan, Xin & Wu, Linfeng & Wang, Yahui, 2024. "Enhancing control and performance evaluation of composite heating systems through modal analysis and model predictive control: Design and comprehensive analysis," Applied Energy, Elsevier, vol. 357(C).
    18. Han, Kedong & Ji, Jie & Cai, Jingyong & Gao, Yuhe & Zhang, Feng & Uddin, Md Muin & Song, Zhiying, 2021. "Experimental and numerical investigation on a novel photovoltaic direct-driven ice storage air-conditioning system," Renewable Energy, Elsevier, vol. 172(C), pages 514-528.
    19. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    20. Lee, Seung Joo & Shon, Byung Hoon & Jung, Chung Woo & Kang, Yong Tae, 2018. "A novel type solar assisted heat pump using a low GWP refrigerant (R-1233zd(E)) with the flexible solar collector," Energy, Elsevier, vol. 149(C), pages 386-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:229:y:2024:i:c:s0960148124008395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.