IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i1p1-30.html
   My bibliography  Save this article

Review of solar dryers for agricultural and marine products

Author

Listed:
  • Fudholi, A.
  • Sopian, K.
  • Ruslan, M.H.
  • Alghoul, M.A.
  • Sulaiman, M.Y.

Abstract

Drying for agricultural and marine products are one of the most attractive and cost-effective application of solar energy. Numerous types of solar dryers have been designed and developed in various parts of the world, yielding varying degrees of technical performance. Basically, there are four types of solar dryers; (1) direct solar dryers, (2) indirect solar dryers, (3) mixed-mode dryers and (4) hybrid solar dryers. This paper is a review of these types of solar dryers with aspect to the product being dried, technical and economical aspects. The technical directions in the development of solar-assisted drying systems for agricultural produce are compact collector design, high efficiency, integrated storage, and long-life drying system. Air-based solar collectors are not the only available systems. Water-based collectors can also be used whereby water to air heat exchanger can be used. The hot air for drying of agricultural produce can be forced to flow in the water to air heat exchanger. The hot water tank acts as heat storage of the solar drying system.

Suggested Citation

  • Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:1-30
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00156-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Othman, M.Y.H. & Sopian, K. & Yatim, B. & Daud, W.R.W., 2006. "Development of advanced solar assisted drying systems," Renewable Energy, Elsevier, vol. 31(5), pages 703-709.
    2. Bala, B.K. & Mondol, M.R.A. & Biswas, B.K. & Das Chowdury, B.L. & Janjai, S., 2003. "Solar drying of pineapple using solar tunnel drier," Renewable Energy, Elsevier, vol. 28(2), pages 183-190.
    3. Fournier, M. & Guinebault, A., 1995. "The “shell” dryer—modelling and experimentation," Renewable Energy, Elsevier, vol. 6(4), pages 459-463.
    4. Smitabhindu, R. & Janjai, S. & Chankong, V., 2008. "Optimization of a solar-assisted drying system for drying bananas," Renewable Energy, Elsevier, vol. 33(7), pages 1523-1531.
    5. Sarsilmaz, C. & Yildiz, C. & Pehlivan, D., 2000. "Drying of apricots in a rotary column cylindrical dryer (RCCD) supported with solar energy," Renewable Energy, Elsevier, vol. 21(2), pages 117-127.
    6. Madhlopa, A & Jones, S.A & Kalenga Saka, J.D, 2002. "A solar air heater with composite–absorber systems for food dehydration," Renewable Energy, Elsevier, vol. 27(1), pages 27-37.
    7. Ong, K.S., 1999. "Solar dryers in the Asia-Pacific region," Renewable Energy, Elsevier, vol. 16(1), pages 779-784.
    8. Koyuncu, Turhan, 2006. "An Investigation on the performance Improvement of greenhouse-type agricultural dryers," Renewable Energy, Elsevier, vol. 31(7), pages 1055-1071.
    9. Sharma, Vinod Kumar & Colangelo, Antonio & Spagna, Giuseppe, 1995. "Experimental investigation of different solar dryers suitable for fruit and vegetable drying," Renewable Energy, Elsevier, vol. 6(4), pages 413-424.
    10. Sarsavadia, P.N., 2007. "Development of a solar-assisted dryer and evaluation of energy requirement for the drying of onion," Renewable Energy, Elsevier, vol. 32(15), pages 2529-2547.
    11. Touré, Siaka & Kibangu-Nkembo, Serge, 2004. "Comparative study of natural solar drying of cassava, banana and mango," Renewable Energy, Elsevier, vol. 29(6), pages 975-990.
    12. Ekechukwu, O.V. & Norton, B., 1997. "Design and measured performance of a solar chimney for natural-circulation solar-energy dryers," Renewable Energy, Elsevier, vol. 10(1), pages 81-90.
    13. Hossain, M.A. & Woods, J.L. & Bala, B.K., 2005. "Optimisation of solar tunnel drier for drying of chilli without color loss," Renewable Energy, Elsevier, vol. 30(5), pages 729-742.
    14. Singh, Sukhmeet & Singh, Parm Pal & Dhaliwal, S.S, 2004. "Multi-shelf portable solar dryer," Renewable Energy, Elsevier, vol. 29(5), pages 753-765.
    15. Enibe, S.O, 2002. "Performance of a natural circulation solar air heating system with phase change material energy storage," Renewable Energy, Elsevier, vol. 27(1), pages 69-86.
    16. Ahmad, N.T., 2001. "Agricultural solar air collector made from low-cost plastic packing film," Renewable Energy, Elsevier, vol. 23(3), pages 663-671.
    17. McDoom, I.A. & Ramsaroop, R. & Saunders, R. & Kai, A.Tang, 1999. "Optimization of solar crop drying," Renewable Energy, Elsevier, vol. 16(1), pages 749-752.
    18. Hollick, J.C., 1999. "Commercial scale solar drying," Renewable Energy, Elsevier, vol. 16(1), pages 714-719.
    19. Forson, F.K. & Nazha, M.A.A. & Akuffo, F.O. & Rajakaruna, H., 2007. "Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb," Renewable Energy, Elsevier, vol. 32(14), pages 2306-2319.
    20. Condorí, Miguel & Saravia, Luis, 1998. "The performance of forced convection greenhouse driers," Renewable Energy, Elsevier, vol. 13(4), pages 453-469.
    21. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    22. Pangavhane, Dilip R. & Sawhney, R.L. & Sarsavadia, P.N., 2002. "Design, development and performance testing of a new natural convection solar dryer," Energy, Elsevier, vol. 27(6), pages 579-590.
    23. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    24. Sopian, K. & Alghoul, M.A. & Alfegi, Ebrahim M. & Sulaiman, M.Y. & Musa, E.A., 2009. "Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media," Renewable Energy, Elsevier, vol. 34(3), pages 640-645.
    25. Ampratwum, David B & Dorvlo, Atsu S.S, 1998. "Evaluation of a solar cabinet dryer as an air-heating system," Applied Energy, Elsevier, vol. 59(1), pages 63-71, January.
    26. Schirmer, P. & Janjai, S. & Esper, A. & Smitabhindu, R. & Mühlbauer, W., 1996. "Experimental investigation of the performance of the solar tunnel dryer for drying bananas," Renewable Energy, Elsevier, vol. 7(2), pages 119-129.
    27. Farkas, I. & Seres, I. & Mészáros, Cs., 1999. "Analytical and experimental study of a modular solar dryer," Renewable Energy, Elsevier, vol. 16(1), pages 773-778.
    28. Gallali, Yahya M & Abujnah, Yahya S & Bannani, Faiz K, 2000. "Preservation of fruits and vegetables using solar drier: a comparative study of natural and solar drying, III; chemical analysis and sensory evaluation data of the dried samples (grapes, figs, tomatoe," Renewable Energy, Elsevier, vol. 19(1), pages 203-212.
    29. Simate, I.N, 2003. "Optimization of mixed-mode and indirect-mode natural convection solar dryers," Renewable Energy, Elsevier, vol. 28(3), pages 435-453.
    30. Gbaha, P. & Yobouet Andoh, H. & Kouassi Saraka, J. & Kaménan Koua, B. & Touré, S., 2007. "Experimental investigation of a solar dryer with natural convective heat flow," Renewable Energy, Elsevier, vol. 32(11), pages 1817-1829.
    31. Hallak, H. & Hillal, J. & Hilal, F. & Rahhal, R., 1996. "The staircase solar dryer: Design and characteristics," Renewable Energy, Elsevier, vol. 7(2), pages 177-183.
    32. Esper, A. & Mühlbauer, W., 1998. "Solar drying - an effective means of food preservation," Renewable Energy, Elsevier, vol. 15(1), pages 95-100.
    33. Condorı́, M & Echazú, R & Saravia, L, 2001. "Solar drying of sweet pepper and garlic using the tunnel greenhouse drier," Renewable Energy, Elsevier, vol. 22(4), pages 447-460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    2. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    3. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    5. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    6. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    7. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    8. Husham Abdulmalek, Shaymaa & Khalaji Assadi, Morteza & Al-Kayiem, Hussain H. & Gitan, Ali Ahmed, 2018. "A comparative analysis on the uniformity enhancement methods of solar thermal drying," Energy, Elsevier, vol. 148(C), pages 1103-1115.
    9. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    10. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    11. Sangamithra, A. & Swamy, Gabriela John & Prema, R. Sorna & Priyavarshini, R. & Chandrasekar, V. & Sasikala, S., 2014. "An overview of a polyhouse dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 902-910.
    12. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.
    13. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    14. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    15. Sekyere, C.K.K. & Forson, F.K. & Adam, F.W., 2016. "Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater," Renewable Energy, Elsevier, vol. 92(C), pages 532-542.
    16. Shanmugam, V. & Natarajan, E., 2006. "Experimental investigation of forced convection and desiccant integrated solar dryer," Renewable Energy, Elsevier, vol. 31(8), pages 1239-1251.
    17. Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
    18. García-Valladares, O. & Ortiz, N.M. & Pilatowsky, I. & Menchaca, A.C., 2020. "Solar thermal drying plant for agricultural products. Part 1: Direct air heating system," Renewable Energy, Elsevier, vol. 148(C), pages 1302-1320.
    19. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    20. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:1-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.