IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v7y1996i2p119-129.html
   My bibliography  Save this article

Experimental investigation of the performance of the solar tunnel dryer for drying bananas

Author

Listed:
  • Schirmer, P.
  • Janjai, S.
  • Esper, A.
  • Smitabhindu, R.
  • Mühlbauer, W.

Abstract

The multi-purpose solar tunnel dryer was used to dry bananas under the hot and humid weather conditions of Thailand in order to investigate its performance. The dryer comprises a plastic sheet-covered flat plate collector and a drying tunnel. The dryer is arranged to supply hot air directly to the drying tunnel using three fans powered by a 53 W solar cell module. The products to be dried are spread in one layer on a plastic net in the drying tunnel to receive energy from both the hot air supplied by the collector and incident solar radiation. This dryer can be used to dry up to 300 kg of ripe bananas in each drying batch. In investigating the performance of the dryer, seven drying tests were conducted at the Royal Chitralada Projects in Bangkok during March–May 1995. Teh temperature of the drying air from the collector varied between 40 and 65°C during drying and the bananas could be dried within 3–5 days, compared to the 5–7 days needed for natural Sun drying. In addition, the bananas being dried in the solar tunnel dryer were completely protected from rain, insects and dust, and the dried bananas were of high quality in terms of flavour, colour and texture. As the fans are powered by the solar module, the dryer could be used in rural areas where there is no supply of electricity from grid. The pay-back period of the dryer is estimated to be about 3 years when the dryer is locally produced.

Suggested Citation

  • Schirmer, P. & Janjai, S. & Esper, A. & Smitabhindu, R. & Mühlbauer, W., 1996. "Experimental investigation of the performance of the solar tunnel dryer for drying bananas," Renewable Energy, Elsevier, vol. 7(2), pages 119-129.
  • Handle: RePEc:eee:renene:v:7:y:1996:i:2:p:119-129
    DOI: 10.1016/0960-1481(95)00138-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148195001387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(95)00138-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    2. Mewa, Eunice A. & Okoth, Michael W. & Kunyanga, Catherine N. & Rugiri, Musa N., 2019. "Experimental evaluation of beef drying kinetics in a solar tunnel dryer," Renewable Energy, Elsevier, vol. 139(C), pages 235-241.
    3. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    4. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    5. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    6. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    7. Tuncer, Azim Doğuş & Khanlari, Ataollah & Sözen, Adnan & Gürbüz, Emine Yağız & Şirin, Ceylin & Gungor, Afsin, 2020. "Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications," Renewable Energy, Elsevier, vol. 160(C), pages 67-85.
    8. Hegazy, Adel A., 1999. "Technical note," Renewable Energy, Elsevier, vol. 18(2), pages 283-304.
    9. Janjai, S. & Tung, P., 2005. "Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices," Renewable Energy, Elsevier, vol. 30(14), pages 2085-2095.
    10. Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
    11. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    12. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    13. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    14. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    15. Azam, Mostafa M. & Eltawil, Mohamed A. & Amer, Baher M.A., 2020. "Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes," Energy, Elsevier, vol. 212(C).
    16. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:7:y:1996:i:2:p:119-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.