IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i7p1661-1667.html
   My bibliography  Save this article

Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand

Author

Listed:
  • Román, Franz
  • Nagle, Marcus
  • Leis, Hermann
  • Janjai, Serm
  • Mahayothee, Busarakorn
  • Haewsungcharoen, Methinee
  • Müller, Joachim

Abstract

Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 (≈US$ 1800 at US$ 1=THB 31).

Suggested Citation

  • Román, Franz & Nagle, Marcus & Leis, Hermann & Janjai, Serm & Mahayothee, Busarakorn & Haewsungcharoen, Methinee & Müller, Joachim, 2009. "Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand," Renewable Energy, Elsevier, vol. 34(7), pages 1661-1667.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:7:p:1661-1667
    DOI: 10.1016/j.renene.2009.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109000172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hollick, J.C., 1999. "Commercial scale solar drying," Renewable Energy, Elsevier, vol. 16(1), pages 714-719.
    2. Janjai, S. & Esper, A. & Mühlbauer, W., 1994. "A procedure for determining the optimum collector area for a solar paddy drying system," Renewable Energy, Elsevier, vol. 4(4), pages 409-416.
    3. Adsten, M & Perers, B & Wäckelgård, E, 2002. "The influence of climate and location on collector performance," Renewable Energy, Elsevier, vol. 25(4), pages 499-509.
    4. Janjai, S. & Tung, P., 2005. "Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices," Renewable Energy, Elsevier, vol. 30(14), pages 2085-2095.
    5. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    2. Nemś, Magdalena & Kasperski, Jacek, 2016. "Experimental investigation of concentrated solar air-heater with internal multiple-fin array," Renewable Energy, Elsevier, vol. 97(C), pages 722-730.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    2. Kareem, M.W. & Habib, Khairul & Ruslan, M.H. & Saha, Bidyut Baran, 2017. "Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa)," Renewable Energy, Elsevier, vol. 113(C), pages 281-292.
    3. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    4. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    5. Yahya, M. & Rachman, Arfidian & Hasibuan, R., 2022. "Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying," Energy, Elsevier, vol. 254(PB).
    6. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    7. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    8. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    9. Youcef-Ali, S. & Desmons, J.Y., 2007. "Influence of the aerothermic parameters and the product quantity on the production capacity of an indirect solar dryer," Renewable Energy, Elsevier, vol. 32(3), pages 496-511.
    10. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    11. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    12. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    13. Thipjak Nualboonrueng & Pongpith Tuenpusa & Yuki Ueda & Atsushi Akisawa, 2012. "Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok," Energies, MDPI, vol. 5(4), pages 1-16, April.
    14. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    15. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    16. Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
    17. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    18. Hossain, M.A. & Woods, J.L. & Bala, B.K., 2005. "Optimisation of solar tunnel drier for drying of chilli without color loss," Renewable Energy, Elsevier, vol. 30(5), pages 729-742.
    19. Esteban Zalamea-Leon & Edgar A. Barragán-Escandón & John Calle-Sigüencia & Mateo Astudillo-Flores & Diego Juela-Quintuña, 2021. "Residential Solar Thermal Performance Considering Self-Shading Incidence between Tubes in Evacuated Tube and Flat Plate Collectors," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    20. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:7:p:1661-1667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.