IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Investigating performance improvement of solar collectors by using nanofluids

Listed author(s):
  • Javadi, F.S.
  • Saidur, R.
  • Kamalisarvestani, M.
Registered author(s):

    The present review is an extensive perspective of the research progress arisen in the performance of solar collector using nanofluids. The increase in the price of fossil fuels and rapid depletion of conventional energy sources are among the major energy concerns. Solar collector, as a kind of green and renewable energy device, can help us stay out of these energy concerns. Low efficiency and high cost of solar collectors compared with the conventional devices persuade scientists and engineers to make effort to increase performance of solar collectors. Nanofluid – the suspension of nanoparticles into a basefluid – has predominant characteristics because of nanoparticles' small size and high surface area. Many researchers evaluated these special properties of nanofluids, using several methods and techniques. Mathematical and numerical methods are practiced and experimental methods come to validate the results. Using nanofluid instead of conventional fluid improves heat transfer as well as optical and thermal properties, efficiency, transmittance and extinction coefficient of solar collector. Based on comprehensive studies, it has been also realized that the thermal properties of nanofluid such as thermal conductivity have significant effect on improving the efficiency of direct solar absorption collectors. On the other hand, using nanofluid is a big challenge in terms of economical aspects. Moreover, there is a lack of study on the effect of nanofluid's optical properties such as transmittance and extinction coefficient on the performance of solar collector. Similarly, effort should be made to perform two-phase analysis of nanofluid and study properties of nanofluid with more than one type of nanoparticle.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Renewable and Sustainable Energy Reviews.

    Volume (Year): 28 (2013)
    Issue (Month): C ()
    Pages: 232-245

    in new window

    Handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:232-245
    DOI: 10.1016/j.rser.2013.06.053
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Nafey, Abmed Safwat, 2005. "Simulation of solar heating systems--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 576-591, December.
    3. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    4. Hellstrom, B & Adsten, M & Nostell, P & Karlsson, B & Wackelgard, E, 2003. "The impact of optical and thermal properties on the performance of flat plate solar collectors," Renewable Energy, Elsevier, vol. 28(3), pages 331-344.
    5. Adsten, M & Perers, B & Wäckelgård, E, 2002. "The influence of climate and location on collector performance," Renewable Energy, Elsevier, vol. 25(4), pages 499-509.
    6. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    7. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    8. Trisaksri, Visinee & Wongwises, Somchai, 2007. "Critical review of heat transfer characteristics of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 512-523, April.
    9. Saidur, R. & Mekhilef, S., 2010. "Energy use, energy savings and emission analysis in the Malaysian rubber producing industries," Applied Energy, Elsevier, vol. 87(8), pages 2746-2758, August.
    10. de Risi, A. & Milanese, M. & Laforgia, D., 2013. "Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids," Renewable Energy, Elsevier, vol. 58(C), pages 134-139.
    11. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    12. Godson, Lazarus & Raja, B. & Mohan Lal, D. & Wongwises, S., 2010. "Enhancement of heat transfer using nanofluids--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 629-641, February.
    13. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    14. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    15. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:232-245. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.