IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v130y2020ics1364032120301829.html
   My bibliography  Save this article

Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimisations: A state-of-the-art review

Author

Listed:
  • Zhou, Yuekuan
  • Zheng, Siqian
  • Liu, Zhengxuan
  • Wen, Tao
  • Ding, Zhixiong
  • Yan, Jun
  • Zhang, Guoqiang

Abstract

Integrating phase change materials (PCMs) in buildings cannot only enhance the energy performance, but also improve the renewable utilization efficiency through considerable latent heat during charging/discharging cycles. However, system performances are dependent on PCMs’ integrated forms, heat transfer enhancement solutions, system operating modes, together with optimal geometrical and operating parameters. In this study, passive, active, and combined passive/active solutions in PCMs systems have been comprehensively reviewed, when being applied in heating, cooling and electrical systems, together with a dialectical analysis on advantages and disadvantages. In addition to novel system designs, interdisciplinary applications of machine learning have been reviewed and formulated, from perspectives of reliable structures, smart operational controls, and stochastic uncertainty-based performance prediction. Furthermore, a generic methodology with a systematic and hierarchical procedure has been proposed, with the implementation of machine-learning based technique for optimisations during both design and operation periods. The mechanisms of machine learning techniques were characterised as the simplifications of modelling and optimization processes, through the errors-driven update, the support vector regression and the backpropagation neural network. Several technical challenges were identified, such as the heat transfer enhancement, the novel structural configurations and the flexible switch on operating modes. Finally, identified challenges on machine learning include the development of advanced learning algorithms for efficient performance predictions, optimal structural configurations on neural networks, the trade-off between computational complexity and reliable optimal solutions, and so on. The formulated climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimisations with interdisciplinary machine learning techniques can promote PCMs applications in sustainable buildings.

Suggested Citation

  • Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120301829
    DOI: 10.1016/j.rser.2020.109889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120301829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    2. Hu, Yue & Heiselberg, Per Kvols & Johra, Hicham & Guo, Rui, 2020. "Experimental and numerical study of a PCM solar air heat exchanger and its ventilation preheating effectiveness," Renewable Energy, Elsevier, vol. 145(C), pages 106-115.
    3. Liang Tang & Zhengxuan Liu & Yuekuan Zhou & Di Qin & Guoqiang Zhang, 2020. "Study on a Dynamic Numerical Model of an Underground Air Tunnel System for Cooling Applications—Experimental Validation and Multidimensional Parametrical Analysis," Energies, MDPI, vol. 13(5), pages 1-20, March.
    4. Lizana, Jesus & de-Borja-Torrejon, Manuel & Barrios-Padura, Angela & Auer, Thomas & Chacartegui, Ricardo, 2019. "Passive cooling through phase change materials in buildings. A critical study of implementation alternatives," Applied Energy, Elsevier, vol. 254(C).
    5. Zhang, Suling & Wu, Wei & Wang, Shuangfeng, 2017. "Integration highly concentrated photovoltaic module exhaust heat recovery system with adsorption air-conditioning module via phase change materials," Energy, Elsevier, vol. 118(C), pages 1187-1197.
    6. Smith, Christopher J. & Forster, Piers M. & Crook, Rolf, 2014. "Global analysis of photovoltaic energy output enhanced by phase change material cooling," Applied Energy, Elsevier, vol. 126(C), pages 21-28.
    7. Ling, Haoshu & Wang, Liang & Chen, Chao & Chen, Haisheng, 2019. "Numerical investigations of optimal phase change material incorporated into ventilated walls," Energy, Elsevier, vol. 172(C), pages 1187-1197.
    8. Moreno, Pere & Solé, Cristian & Castell, Albert & Cabeza, Luisa F., 2014. "The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1-13.
    9. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    10. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    11. Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.
    12. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    13. Zhou, Yuekuan & Zheng, Siqian, 2020. "Stochastic uncertainty-based optimisation on an aerogel glazing building in China using supervised learning surrogate model and a heuristic optimisation algorithm," Renewable Energy, Elsevier, vol. 155(C), pages 810-826.
    14. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    15. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    16. Choubineh, Negin & Jannesari, Hamid & Kasaeian, Alibakhsh, 2019. "Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 103-111.
    17. Zhou, Dan & Eames, Philip, 2019. "Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control," Renewable Energy, Elsevier, vol. 139(C), pages 507-514.
    18. Lin, Wenye & Ma, Zhenjun, 2016. "Using Taguchi-Fibonacci search method to optimize phase change materials enhanced buildings with integrated solar photovoltaic thermal collectors," Energy, Elsevier, vol. 106(C), pages 23-37.
    19. Navarro, Lidia & de Gracia, Alvaro & Niall, Dervilla & Castell, Albert & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system," Renewable Energy, Elsevier, vol. 85(C), pages 1334-1356.
    20. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    21. Li, Dacheng & Wang, Jihong & Ding, Yulong & Yao, Hua & Huang, Yun, 2019. "Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage," Applied Energy, Elsevier, vol. 236(C), pages 1168-1182.
    22. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties," Renewable Energy, Elsevier, vol. 151(C), pages 403-418.
    23. Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
    24. Kuznik, Frédéric & David, Damien & Johannes, Kevyn & Roux, Jean-Jacques, 2011. "A review on phase change materials integrated in building walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 379-391, January.
    25. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations—study of modelling and application in five clima," Energy, Elsevier, vol. 192(C).
    26. Mandilaras, I.D. & Kontogeorgos, D.A. & Founti, M.A., 2015. "A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components," Renewable Energy, Elsevier, vol. 76(C), pages 790-804.
    27. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    28. Yan, Tian & Sun, Zhongwei & Gao, Jiajia & Xu, Xinhua & Yu, Jinghua & Gang, Wenjie, 2020. "Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation," Renewable Energy, Elsevier, vol. 146(C), pages 1451-1464.
    29. Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    30. Waqas, Adeel & Ji, Jie & Xu, Lijie & Ali, Majid & Zeashan, & Alvi, Jahanzeb, 2018. "Thermal and electrical management of photovoltaic panels using phase change materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 254-271.
    31. Xiaohong Liu & Yuekuan Zhou & Chun-Qing Li & Yaolin Lin & Wei Yang & Guoqiang Zhang, 2019. "Optimization of a New Phase Change Material Integrated Photovoltaic/Thermal Panel with The Active Cooling Technique Using Taguchi Method," Energies, MDPI, vol. 12(6), pages 1-22, March.
    32. Álvarez, Servando & Cabeza, Luisa F. & Ruiz-Pardo, Alvaro & Castell, Albert & Tenorio, José Antonio, 2013. "Building integration of PCM for natural cooling of buildings," Applied Energy, Elsevier, vol. 109(C), pages 514-522.
    33. Saffari, Mohammad & de Gracia, Alvaro & Ushak, Svetlana & Cabeza, Luisa F., 2017. "Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1239-1255.
    34. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2019. "Study on the energy performance enhancement of a new PCMs integrated hybrid system with the active cooling and hybrid ventilations," Energy, Elsevier, vol. 179(C), pages 111-128.
    35. Soni, Vikram & Kumar, Arvind & Jain, V.K., 2018. "Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery," Renewable Energy, Elsevier, vol. 127(C), pages 587-601.
    36. Xu, H. & Lin, W.Y. & Dal Magro, F. & Li, T & Py, X. & Romagnoli, A., 2019. "Towards higher energy efficiency in future waste-to-energy plants with novel latent heat storage-based thermal buffer system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 324-337.
    37. Lu, Shilei & Xu, Bowen & Tang, Xiaolei, 2020. "Experimental study on double pipe PCM floor heating system under different operation strategies," Renewable Energy, Elsevier, vol. 145(C), pages 1280-1291.
    38. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    39. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    40. Hanif, M. & Mahlia, T.M.I. & Zare, A. & Saksahdan, T.J. & Metselaar, H.S.C., 2014. "Potential energy savings by radiative cooling system for a building in tropical climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 642-650.
    41. Lin, Wenye & Ma, Zhenjun & Ren, Haoshan & Gschwander, Stefan & Wang, Shugang, 2019. "Multi-objective optimisation of thermal energy storage using phase change materials for solar air systems," Renewable Energy, Elsevier, vol. 130(C), pages 1116-1129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Zhixiong & Wu, Wei & Leung, Michael K.H., 2022. "On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Talha Batuhan Korkut & Aytaç Gören & Ahmed Rachid, 2022. "Numerical and Experimental Study of a PVT Water System under Daily Weather Conditions," Energies, MDPI, vol. 15(18), pages 1-14, September.
    4. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    5. Abokersh, Mohamed Hany & Gangwar, Sachin & Spiekman, Marleen & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2021. "Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept," Renewable Energy, Elsevier, vol. 180(C), pages 893-913.
    6. Fattaheian-Dehkordi, Sajjad & Abbaspour, Ali & Fotuhi-Firuzabad, Mahmud & Lehtonen, Matti, 2022. "A new management framework for mitigating intense ramping in distribution systems," Energy, Elsevier, vol. 254(PA).
    7. Hossein Arasteh & Wahid Maref & Hamed H. Saber, 2023. "Energy and Thermal Performance Analysis of PCM-Incorporated Glazing Units Combined with Passive and Active Techniques: A Review Study," Energies, MDPI, vol. 16(3), pages 1-42, January.
    8. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Facundo Bre & Antonio Caggiano & Eduardus A. B. Koenders, 2022. "Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    10. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    12. Leland Weiss & Ramanshu Jha, 2023. "Small-Scale Phase Change Materials in Low-Temperature Applications: A Review," Energies, MDPI, vol. 16(6), pages 1-24, March.
    13. Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
    14. Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
    15. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    16. Mukhamet, Tileuzhan & Kobeyev, Sultan & Nadeem, Abid & Memon, Shazim Ali, 2021. "Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations," Energy, Elsevier, vol. 215(PB).
    17. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    18. Amaral, C. & Silva, T. & Mohseni, F. & Amaral, J.S. & Amaral, V.S. & Marques, P.A.A.P. & Barros-Timmons, A. & Vicente, R., 2021. "Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material," Energy, Elsevier, vol. 216(C).
    19. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    3. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties," Renewable Energy, Elsevier, vol. 151(C), pages 403-418.
    4. Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
    5. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations—study of modelling and application in five clima," Energy, Elsevier, vol. 192(C).
    7. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    8. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    9. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    10. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
    12. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    13. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Liang Tang & Zhengxuan Liu & Yuekuan Zhou & Di Qin & Guoqiang Zhang, 2020. "Study on a Dynamic Numerical Model of an Underground Air Tunnel System for Cooling Applications—Experimental Validation and Multidimensional Parametrical Analysis," Energies, MDPI, vol. 13(5), pages 1-20, March.
    16. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    17. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    18. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    19. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    20. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120301829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.