Performance prediction of heat pipe evacuated tube solar collectors: Analytical modeling and data-driven machine learning/ANN approach with developing web application
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135512
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Chopra, K. & Tyagi, V.V. & Popli, Sakshi & Pandey, A.K., 2023. "Technical & financial feasibility assessment of heat pipe evacuated tube collector for water heating using Monte Carlo technique for buildings," Energy, Elsevier, vol. 267(C).
- Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
- Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
- Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.
- Meligy, Rowida & Montenon, Alaric & Hassan, Hadeer A., 2024. "Comparative analysis of machine learning models of linear Fresnel solar collector," Renewable Energy, Elsevier, vol. 230(C).
- Kicsiny, Richárd, 2016. "Improved multiple linear regression based models for solar collectors," Renewable Energy, Elsevier, vol. 91(C), pages 224-232.
- Joo, Hong-Jin & Kwak, Hee-Youl & Kong, Minsuk, 2022. "Effect of twisted tape inserts on thermal performance of heat pipe evacuated-tube solar thermal collector," Energy, Elsevier, vol. 254(PB).
- Mohamed Chaibi & EL Mahjoub Benghoulam & Lhoussaine Tarik & Mohamed Berrada & Abdellah El Hmaidi, 2021. "An Interpretable Machine Learning Model for Daily Global Solar Radiation Prediction," Energies, MDPI, vol. 14(21), pages 1-19, November.
- Zhijian Liu & Kejun Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-16, December.
- Du, Bin & Lund, Peter D. & Wang, Jun, 2021. "Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector," Energy, Elsevier, vol. 220(C).
- Chen, Xiaomeng & Wang, Yang & Yang, Xudong, 2023. "New biaxial approach to evaluate the optical performance of evacuated tube solar thermal collector," Energy, Elsevier, vol. 271(C).
- Samimi, Mohsen & Moghadam, Hamid, 2024. "Modified evacuated tube collector basin solar still for optimal desalination of reverse osmosis concentrate," Energy, Elsevier, vol. 289(C).
- Anish Nair & Ramkumar P. & Sivasubramanian Mahadevan & Chander Prakash & Saurav Dixit & Gunasekaran Murali & Nikolai Ivanovich Vatin & Kirill Epifantsev & Kaushal Kumar, 2022. "Machine Learning for Prediction of Heat Pipe Effectiveness," Energies, MDPI, vol. 15(9), pages 1-14, April.
- Sana Said & Sofiene Mellouli & Talal Alqahtani & Salem Algarni & Ridha Ajjel & Kaouther Ghachem & Lioua Kolsi, 2023. "An Experimental Comparison of the Performance of Various Evacuated Tube Solar Collector Designs," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
- Li, Jinping & Sun, Xiaohua & Zhu, Junjie & Karkon, Ehsan Gholamian & Novakovic, Vojislav, 2024. "Performance comparison of air source heat pump coupling with solar evacuated tube water heater and that with micro heat pipe PV/T," Energy, Elsevier, vol. 300(C).
- Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
- Nunes Maciel, Joylan & Javier Gimenez Ledesma, Jorge & Hideo Ando Junior, Oswaldo, 2024. "Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
- Daghigh, Roonak & Arshad, Siamand Azizi & Ensafjoee, Koosha & Hajialigol, Najmeh, 2024. "A data-driven model for a liquid desiccant regenerator equipped with an evacuated tube solar collector: Random forest regression, support vector regression and artificial neural network," Energy, Elsevier, vol. 295(C).
- Hu, Qinghua & Zhang, Rujia & Zhou, Yucan, 2016. "Transfer learning for short-term wind speed prediction with deep neural networks," Renewable Energy, Elsevier, vol. 85(C), pages 83-95.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Linh Bui Duy & Ninh Nguyen Quang & Binh Doan Van & Eleonora Riva Sanseverino & Quynh Tran Thi Tu & Hang Le Thi Thuy & Sang Le Quang & Thinh Le Cong & Huyen Cu Thi Thanh, 2024. "Refining Long Short-Term Memory Neural Network Input Parameters for Enhanced Solar Power Forecasting," Energies, MDPI, vol. 17(16), pages 1-22, August.
- Zhang, Yuanting & Li, Qing & Qiu, Yu, 2024. "Real-time and annual performance evaluation of an ultra-high-temperature concentrating solar collector by developing an MCRT-CFD-ANN coupled model," Energy, Elsevier, vol. 307(C).
- Du, Bin & Lund, Peter D. & Wang, Jun, 2021. "Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector," Energy, Elsevier, vol. 220(C).
- Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
- Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
- Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
- Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
- Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
- Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
- Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Wang, Yong & Yang, Zhongsen & Zhou, Ying & Liu, Hao & Yang, Rui & Sun, Lang & Sapnken, Flavian Emmanuel & Narayanan, Govindasami, 2025. "A novel structure adaptive new information priority grey Bernoulli model and its application in China's renewable energy production," Renewable Energy, Elsevier, vol. 239(C).
- Chen, Xiaomeng & Yang, Xudong & Li, Muran, 2022. "Combining horizontal evacuated tubes with booster mirror reflector to achieve seasonal reverse output: Technical and experimental investigation," Renewable Energy, Elsevier, vol. 188(C), pages 450-464.
- Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011545. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.