IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp115-124.html
   My bibliography  Save this article

A simple method to achieve a uniform flux distribution in a multi-faceted point focus concentrator

Author

Listed:
  • Perez-Enciso, Ricardo
  • Gallo, Alessandro
  • Riveros-Rosas, David
  • Fuentealba-Vidal, Edward
  • Perez-Rábago, Carlos

Abstract

A method to achieve a uniform flux distribution with a multi-faceted point focus concentrator for laboratory tests is proposed in this work. The method can be applied to different types of receiver - thermal or photovoltaic - and no additional device is required to homogenize the flux. The technique consists in moving the receiver from the focal plane and enlarging the solar spot impinging on it. At the same time, each mirror aim-point is adjusted in order to superimpose the images that have been generated by every facet. To evaluate the method, a real multi-faceted concentrator composed of eighteen spherical mirrors was modeled in a ray-tracing software. The procedure was validated through the comparison of an image of the real solar spot on the receiver generated by three mirrors, and the simulated flux obtained the same way. This way a mean concentrator global optical error of 2.8 mrad was estimated. This value was used then for further analyses. Results show that the concentration factor can be varied in a range of 150–900 suns over a receiver diameter of up to 7 cm. Hence, according to the receiver requirements, it is possible to expand the distribution and to alter the intensity of the flux. Finally, optical parametrical analyses were carried out, from which it is inferred that good quality optics give rise to a more homogeneous solar flux on the receiver.

Suggested Citation

  • Perez-Enciso, Ricardo & Gallo, Alessandro & Riveros-Rosas, David & Fuentealba-Vidal, Edward & Perez-Rábago, Carlos, 2016. "A simple method to achieve a uniform flux distribution in a multi-faceted point focus concentrator," Renewable Energy, Elsevier, vol. 93(C), pages 115-124.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:115-124
    DOI: 10.1016/j.renene.2016.02.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaramillo, O.A. & Pérez-Rábago, C.A. & Arancibia-Bulnes, C.A. & Estrada, C.A., 2008. "A flat-plate calorimeter for concentrated solar flux evaluation," Renewable Energy, Elsevier, vol. 33(10), pages 2322-2328.
    2. Alonso, Elisa & Romero, Manuel, 2015. "Review of experimental investigation on directly irradiated particles solar reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 53-67.
    3. Riveros-Rosas, David & Sánchez-González, Marcelino & Arancibia-Bulnes, Camilo A. & Estrada, Claudio A., 2011. "Influence of the size of facets on point focus solar concentrators," Renewable Energy, Elsevier, vol. 36(3), pages 966-970.
    4. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    5. Chong, Kok-Keong & Lau, Sing-Liong & Yew, Tiong-Keat & Tan, Philip Chee-Lin, 2013. "Design and development in optics of concentrator photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 598-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Jian & Peng, You-duo & Cheng, Zi-ran, 2018. "Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system," Renewable Energy, Elsevier, vol. 129(PA), pages 431-445.
    2. Tang, Xin-Yuan & Zhang, Kai-Ran & Yang, Wei-Wei & Dou, Pei-Yuan, 2023. "Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution," Energy, Elsevier, vol. 263(PB).
    3. Guobin Cao & Hua Qin & Rajan Ramachandran & Bo Liu, 2019. "Solar Concentrator Consisting of Multiple Aspheric Reflectors," Energies, MDPI, vol. 12(21), pages 1-14, October.
    4. Nidia Aracely Cisneros-Cárdenas & Rafael Cabanillas-López & Ricardo Pérez-Enciso & Guillermo Martínez-Rodríguez & Rafael García-Gutiérrez & Carlos Pérez-Rábago & Ramiro Calleja-Valdez & David Riveros-, 2021. "Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator," Energies, MDPI, vol. 14(21), pages 1-15, October.
    5. Song, Jifeng & Wu, Zhaoxuan & Wang, Juntao & Zhang, Kexin & Wang, Kai & Liu, Kunhao & Duan, Liqiang & Hou, Hongjuan, 2021. "Application of highly concentrated sunlight transmission and daylighting indoor via plastic optical fibers with comprehensive cooling approaches," Renewable Energy, Elsevier, vol. 180(C), pages 1391-1404.
    6. Yuan, Yu & Wu, Gang & Yang, Qichang & Cheng, Ruifeng & Tong, Yuxin & Zhang, Yi & Fang, Hui & Ma, Qianlei, 2021. "Experimental and analytical optical-thermal performance of evacuated cylindrical tube receiver for solar dish collector," Energy, Elsevier, vol. 234(C).
    7. Duc Tu Vu & Ngoc Minh Kieu & Tran Quoc Tien & Thanh Phuong Nguyen & Hoang Vu & Seoyong Shin & Ngoc Hai Vu, 2022. "Solar Concentrator Bio-Inspired by the Superposition Compound Eye for High-Concentration Photovoltaic System up to Thousands Fold Factor," Energies, MDPI, vol. 15(9), pages 1-24, May.
    8. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    9. Moreno-Álvarez, Lúar & Amat-Castrillón, Andrés, 2019. "Comments to “A simple method to achieve a uniform flux distribution in a multi-faceted point focus concentrator”," Renewable Energy, Elsevier, vol. 133(C), pages 1479-1483.
    10. Wang, Cheng-Long & Gong, Jing-Hu & Yan, Jia-Jie & Zhou, Yuan & Fan, Duo-Wang, 2019. "Theoretical and experimental study on the uniformity of reflective high concentration photovoltaic system with light funnel," Renewable Energy, Elsevier, vol. 133(C), pages 893-900.
    11. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Pankaj & Tripathi, Brijesh & Rathod, Siddharth & Kumar, Manoj, 2013. "Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 812-823.
    2. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    3. Giannuzzi, Alessandra & Diolaiti, Emiliano & Lombini, Matteo & De Rosa, Adriano & Marano, Bruno & Bregoli, Giovanni & Cosentino, Giuseppe & Foppiani, Italo & Schreiber, Laura, 2015. "Enhancing the efficiency of solar concentrators by controlled optical aberrations: Method and photovoltaic application," Applied Energy, Elsevier, vol. 145(C), pages 211-222.
    4. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
    5. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
    6. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    7. Xing, Yupeng & Han, Peide & Wang, Shuai & Liang, Peng & Lou, Shishu & Zhang, Yuanbo & Hu, Shaoxu & Zhu, Huishi & Zhao, Chunhua & Mi, Yanhong, 2015. "A review of concentrator silicon solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1697-1708.
    8. Zhang, J.J. & Qu, Z.G. & Zhang, J.F., 2022. "Diode model of nonuniform irradiation treatment to predict multiscale solar-electrical conversion for the concentrating plasmonic photovoltaic system," Applied Energy, Elsevier, vol. 324(C).
    9. Baig, Hasan & Sarmah, Nabin & Chemisana, Daniel & Rosell, Joan & Mallick, Tapas K., 2014. "Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge," Energy, Elsevier, vol. 73(C), pages 177-191.
    10. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    11. Seo, Su Been & Go, Eun Sol & Ling, Jester Lih Jie & Lee, See Hoon, 2022. "Techno-economic assessment of a solar-assisted biomass gasification process," Renewable Energy, Elsevier, vol. 193(C), pages 23-31.
    12. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    13. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    14. Huang, Weidong & Huang, Farong & Hu, Peng & Chen, Zeshao, 2013. "Prediction and optimization of the performance of parabolic solar dish concentrator with sphere receiver using analytical function," Renewable Energy, Elsevier, vol. 53(C), pages 18-26.
    15. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Wang, Cheng-Long & Gong, Jing-Hu & Yan, Jia-Jie & Zhou, Yuan & Fan, Duo-Wang, 2019. "Theoretical and experimental study on the uniformity of reflective high concentration photovoltaic system with light funnel," Renewable Energy, Elsevier, vol. 133(C), pages 893-900.
    17. Renzi, M. & Egidi, L. & Comodi, G., 2015. "Performance analysis of two 3.5kWp CPV systems under real operating conditions," Applied Energy, Elsevier, vol. 160(C), pages 687-696.
    18. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Nasrallah, Sassi, 2015. "Optical qualification of a solar parabolic concentrator using photogrammetry technique," Energy, Elsevier, vol. 90(P1), pages 403-416.
    19. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    20. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:115-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.