IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v71y2017icp309-322.html
   My bibliography  Save this article

A review of nonimaging solar concentrators for stationary and passive tracking applications

Author

Listed:
  • Madala, Srikanth
  • Boehm, Robert F.

Abstract

The solar energy research community has realized the redundancy of image-forming while collecting/concentrating solar energy with the discovery of the nonimaging type radiation collection mechanism in 1965. Since then, various nonimaging concentration mechanisms have proven their superior collection efficiency over their imaging counter-parts. The feasibility of using nonimaging concentrators successfully for stationary applications has rekindled interest in them. The economic benefits are appealing owing to the elimination of tracking costs (installation, operation & maintenance and auxiliary energy). This paper is an exhaustive review of the available nonimaging concentrating mechanisms with stationary applications in mind. This paper also explores the idea of coupling nonimaging concentrators with passive solar tracking mechanism.

Suggested Citation

  • Madala, Srikanth & Boehm, Robert F., 2017. "A review of nonimaging solar concentrators for stationary and passive tracking applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 309-322.
  • Handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:309-322
    DOI: 10.1016/j.rser.2016.12.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116311133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.12.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yadav, Y.P. & Yadav, A.K. & Anwar, N. & Eames, P.C. & Norton, B., 1996. "The fabrication and testing of a line-axis compound parabolic concentrating solar energy collector," Renewable Energy, Elsevier, vol. 9(1), pages 572-575.
    2. Chong, K.K. & Chay, K.G. & Chin, K.H., 2012. "Study of a solar water heater using stationary V-trough collector," Renewable Energy, Elsevier, vol. 39(1), pages 207-215.
    3. Xie, W.T. & Dai, Y.J. & Wang, R.Z. & Sumathy, K., 2011. "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2588-2606, August.
    4. Azhari, A.A. & Khonkar, H.E., 1996. "A thermal comparison performance of CPC with modified (duel-cavity) and non-modified absorber," Renewable Energy, Elsevier, vol. 9(1), pages 584-588.
    5. Baig, Hasan & Sarmah, Nabin & Chemisana, Daniel & Rosell, Joan & Mallick, Tapas K., 2014. "Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge," Energy, Elsevier, vol. 73(C), pages 177-191.
    6. Chong, Kok-Keong & Lau, Sing-Liong & Yew, Tiong-Keat & Tan, Philip Chee-Lin, 2013. "Design and development in optics of concentrator photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 598-612.
    7. Norton, B. & Kothdiwala, A.F. & Eames, P.C., 1994. "Effect of inclination on the performance of CPC solar energy collectors," Renewable Energy, Elsevier, vol. 5(1), pages 357-367.
    8. Lu, Z.S. & Wang, R.Z. & Xia, Z.Z. & Lu, X.R. & Yang, C.B. & Ma, Y.C. & Ma, G.B., 2013. "Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors," Renewable Energy, Elsevier, vol. 50(C), pages 299-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    2. Nithyanandam, K. & Narayan, A. & Pitchumani, R., 2018. "Analysis and design of a radial waveguide concentrator for concentrated solar thermal applications," Energy, Elsevier, vol. 151(C), pages 940-953.
    3. Przemyslaw Zawadzki & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Abu Bakar Munir, 2020. "Life Cycle Assessment of a Rotationally Asymmetrical Compound Parabolic Concentrator (RACPC)," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    4. Hadavinia, Homan & Singh, Harjit, 2019. "Modelling and experimental analysis of low concentrating solar panels for use in building integrated and applied photovoltaic (BIPV/BAPV) systems," Renewable Energy, Elsevier, vol. 139(C), pages 815-829.
    5. Karunesh Kant & Karthik Nithyanandam & Ranga Pitchumani, 2021. "Analysis and Optimization of a Novel Hexagonal Waveguide Concentrator for Solar Thermal Applications," Energies, MDPI, vol. 14(8), pages 1-24, April.
    6. Michael, Jee Joe & Iqbal, S. Mohamed & Iniyan, S. & Goic, Ranko, 2018. "Enhanced electrical performance in a solar photovoltaic module using V-trough concentrators," Energy, Elsevier, vol. 148(C), pages 605-613.
    7. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    8. Osório, T. & Horta, P. & Marchã, J. & Collares-Pereira, M., 2019. "One-Sun CPC-type solar collectors with evacuated tubular receivers," Renewable Energy, Elsevier, vol. 134(C), pages 247-257.
    9. Javed Akhter & Syed I. Gilani & Hussain H. Al-Kayiem & Muzaffar Ali, 2019. "Optical Performance Analysis of Single Flow Through and Concentric Tube Receiver Coupled with a Modified CPC Collector Under Different Configurations," Energies, MDPI, vol. 12(21), pages 1-24, October.
    10. Abdullah Alamoudi & Syed Muhammad Saaduddin & Abu Bakar Munir & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Siti Hajar Mohd Yasin & Ridoan Karim & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorg, 2019. "Using Static Concentrator Technology to Achieve Global Energy Goal," Sustainability, MDPI, vol. 11(11), pages 1-22, May.
    11. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. More, Supriya S. & Sagade, Atul A. & Ravindranath, G. & More, Sagar & More, Santosh, 2023. "Innovative mini-channel design for a compound parabolic solar thermal collector serving intermediate temperature applications," Energy, Elsevier, vol. 283(C).
    13. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    2. Thanh Tuan Pham & Ngoc Hai Vu & Seoyong Shin, 2019. "Novel Design of Primary Optical Elements Based on a Linear Fresnel Lens for Concentrator Photovoltaic Technology," Energies, MDPI, vol. 12(7), pages 1-20, March.
    3. Habib Shoeibi & Azad Jarrahian & Mehdi Mehrpooya & Ehsanolah Assaerh & Mohsen Izadi & Fathollah Pourfayaz, 2022. "Mathematical Modeling and Simulation of a Compound Parabolic Concentrators Collector with an Absorber Tube," Energies, MDPI, vol. 16(1), pages 1-20, December.
    4. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    5. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    6. Chong, Kok-Keong & Onubogu, Nneka Obianuju & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Woei-Chong, 2017. "Design and construction of active daylighting system using two-stage non-imaging solar concentrator," Applied Energy, Elsevier, vol. 207(C), pages 45-60.
    7. Chong, Kok-Keong & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Ming-Hui & Tan, Woei-Chong & Lim, Boon-Han, 2017. "Dense-array concentrator photovoltaic prototype using non-imaging dish concentrator and an array of cross compound parabolic concentrators," Applied Energy, Elsevier, vol. 204(C), pages 898-911.
    8. Yuan, Yanping & Zhang, Haiquan & Yang, Fan & Zhang, Nan & Cao, Xiaoling, 2016. "Inorganic composite sorbents for water vapor sorption: A research progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 761-776.
    9. Saim Memon & Khawaja Noman Tahir, 2018. "Experimental and Analytical Simulation Analyses on the Electrical Performance of Thermoelectric Generator Modules for Direct and Concentrated Quartz-Halogen Heat Harvesting," Energies, MDPI, vol. 11(12), pages 1-17, November.
    10. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    11. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    12. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    13. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
    14. Baig, Hasan & Sarmah, Nabin & Chemisana, Daniel & Rosell, Joan & Mallick, Tapas K., 2014. "Enhancing performance of a linear dielectric based concentrating photovoltaic system using a reflective film along the edge," Energy, Elsevier, vol. 73(C), pages 177-191.
    15. Ali, Dilawer & Ratismith, Wattana, 2021. "A semicircular trough solar collector for air-conditioning system using a single effect NH3–H2O absorption chiller," Energy, Elsevier, vol. 215(PA).
    16. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    17. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    18. Devanarayanan, K. & Kalidasa Murugavel, K., 2014. "Integrated collector storage solar water heater with compound parabolic concentrator – development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 51-64.
    19. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    20. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:71:y:2017:i:c:p:309-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.