IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012752.html
   My bibliography  Save this article

A method for global potential assessment of roof integrated two-stage solar concentrators (TSSCs) at district scale

Author

Listed:
  • Bushra, Nayab
  • Hartmann, Timo
  • Constantin Ungureanu, Lucian

Abstract

This paper proposes a core method for integrating two-stage solar concentrators (TSSCs) as roof-integrated energy supply systems at the district scale. However, the performance of these systems not only depends on good configurations but also on optimal building typologies. The design process of buildings-integrated TSSCs on a district scale reflects a complex multi-criteria problem, where several conflicting concerns from multiple stakeholders need to be addressed. Thus, the proposed method aims to support the multi-criteria decision-making process in the early-stage design of sustainable districts utilizing TSSC technology. The method contributes to the design of the TSSCs relative to district designs. Our method enables design generation according to a set of decision variables related to the district (roof type and slope, orientation, building height, width, and length), and TSSC (type, geometric ratio, separation distance between mirrors, modules number, and solar cell size). The method uses a parametric modeling approach combined with a multi-objective optimization algorithm (NSGA-II) that enables design optimization of the district and TSSCs in two consecutive steps. The two-step design optimization allows finding optimal district designs for maximizing cumulative direct normal irradiance (DNI) and minimizing the total energy demand, and TSSC designs for maximizing average monthly load match index (av.LMI) (a ratio of energy yield to demand) and minimizing the average covered roof area occupied by modules. We validated the proposed method in an illustrative case study of ‘Buckower Felder’, a district in the city of Berlin (Germany). The illustrative application shows that our method enables the performance-driven, generative design of both; district and building-integrated TSSCs and searches for the most appropriate solutions i.e., urban designs for maximum DNI and minimum demand, and TSSC designs for maximum av.LMI and minimum covered roof area. Results indicate that there is a trade-off between objectives, where district design with high DNI (>4500 kW/m2/h/month) reflects high energy demand (8.6e + 05 kWh/month). Similarly, TSSC designs ensuring high av.LMI (>1.0) require a large roof area (>47 %). Given these trade-offs, the method can meaningfully support the decision-making process. Thus, the method allows for large-scale integration of TSSCs with buildings at an urban scale and supports solar energy planning and energy transition policies for sustainable districts.

Suggested Citation

  • Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "A method for global potential assessment of roof integrated two-stage solar concentrators (TSSCs) at district scale," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012752
    DOI: 10.1016/j.apenergy.2022.120018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    2. Karathanassis, I.K. & Papanicolaou, E. & Belessiotis, V. & Bergeles, G.C., 2017. "Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling," Renewable Energy, Elsevier, vol. 101(C), pages 467-483.
    3. Gabriele Lobaccaro & Malgorzata Maria Lisowska & Erika Saretta & Pierluigi Bonomo & Francesco Frontini, 2019. "A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale," Energies, MDPI, vol. 12(18), pages 1-28, September.
    4. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    5. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Mattia Manni & Gabriele Lobaccaro & Nicola Lolli & Rolf Andre Bohne, 2020. "Parametric Design to Maximize Solar Irradiation and Minimize the Embodied GHG Emissions for a ZEB in Nordic and Mediterranean Climate Zones," Energies, MDPI, vol. 13(18), pages 1-18, September.
    7. Arteconi, Alessia & Del Zotto, Luca & Tascioni, Roberto & Cioccolanti, Luca, 2019. "Modelling system integration of a micro solar Organic Rankine Cycle plant into a residential building," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    9. Kandilli, Canan & Külahlı, Gürhan, 2017. "Performance analysis of a concentrated solar energy for lighting-power generation combined system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 101(C), pages 713-727.
    10. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    11. Evins, Ralph, 2013. "A review of computational optimisation methods applied to sustainable building design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 230-245.
    12. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    13. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2019. "Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality," Applied Energy, Elsevier, vol. 233, pages 424-442.
    14. Burhan, Muhammad & Chua, Kian Jon Ernest & Ng, Kim Choon, 2016. "Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm," Energy, Elsevier, vol. 99(C), pages 115-128.
    15. Sarralde, Juan José & Quinn, David James & Wiesmann, Daniel & Steemers, Koen, 2015. "Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London," Renewable Energy, Elsevier, vol. 73(C), pages 10-17.
    16. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    17. Al-Alili, A. & Hwang, Y. & Radermacher, R. & Kubo, I., 2012. "A high efficiency solar air conditioner using concentrating photovoltaic/thermal collectors," Applied Energy, Elsevier, vol. 93(C), pages 138-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bushra, Nayab, 2024. "A parametric modeling approach for the integrative design of solar façade and façade-integrated two-stage solar concentrators (TSSCs)," Applied Energy, Elsevier, vol. 375(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bushra, Nayab & Hartmann, Timo, 2024. "A method for design optimization of roof-integrated two-stage solar concentrators (TSSCs)," Applied Energy, Elsevier, vol. 353(PA).
    2. Bushra, Nayab, 2024. "A parametric modeling approach for the integrative design of solar façade and façade-integrated two-stage solar concentrators (TSSCs)," Applied Energy, Elsevier, vol. 375(C).
    3. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "Performance assessment method for roof-integrated TSSCs," Applied Energy, Elsevier, vol. 322(C).
    4. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Bushra, Nayab, 2023. "Parametric model of window-integrated planer Cassegrain concentrator-based shading system (PCSS)," Applied Energy, Elsevier, vol. 340(C).
    6. Bushra, Nayab, 2023. "Techno-economic feasibility assessment of a planer cassegrain solar concentrator (PCSC) based on a parametric modeling approach," Energy, Elsevier, vol. 273(C).
    7. Matteo Formolli & Gabriele Lobaccaro & Jouri Kanters, 2021. "Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers," Energies, MDPI, vol. 14(24), pages 1-18, December.
    8. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    9. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    10. Kurdi, Yumna & Alkhatatbeh, Baraa J. & Asadi, Somayeh & Jebelli, Houtan, 2022. "A decision-making design framework for the integration of PV systems in the urban energy planning process," Renewable Energy, Elsevier, vol. 197(C), pages 288-304.
    11. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    12. Meskiana Boulahia & Kahina Amal Djiar & Miguel Amado, 2021. "Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria," Energies, MDPI, vol. 14(6), pages 1-16, March.
    13. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    14. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    15. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    16. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    17. Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).
    19. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    20. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.