IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122007316.html
   My bibliography  Save this article

A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review

Author

Listed:
  • Bushra, Nayab

Abstract

Modern urban architecture is innovative, involves integrated solar technologies to increase sustainability, by providing efficient energy solutions, and involves stakeholders from multiple domains, with specific concerns. Such development, however, leads to complex interrelationships among disciplines and relies on models to simulate different aspects. To address these, the parametric design approach is widely adopted, enabling the generation of several urban designs in the early stage, and evaluating these across several objectives. This provides possibilities for creating collaborative, multi-disciplinary workflows for energy projects at different scales. This paper provides a critical overview of the possibilities offered by the parametric design, to increase the sustainability of advanced buildings, by putting a focus on solar energy. This paper analyses the parametric design across five categories: design scope, application, technology, objective, and implementation method. No review article currently highlights all these aspects to observe overall research in the field. The results indicate that the parametric design is prominent on a single building-scale, while windows in building-scale and building forms in district-scale models are widely manipulated parameters. Most models are limited to BIPV, shader, and solar façade technologies, daylight and solar power applications, and energy and comfort-related objectives, the majority of which are implemented using dedicated parametric modeling tools. Further ongoing research trends emphasize how parametric design transforms the field and creates opportunities for designers working in building energy research. The analytical results help to find current barriers, and future initiatives to implement the parametric design at a wider spread for solar integration into buildings.

Suggested Citation

  • Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007316
    DOI: 10.1016/j.rser.2022.112849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122007316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    2. Mattia Manni & Gabriele Lobaccaro & Nicola Lolli & Rolf Andre Bohne, 2020. "Parametric Design to Maximize Solar Irradiation and Minimize the Embodied GHG Emissions for a ZEB in Nordic and Mediterranean Climate Zones," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    4. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    5. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    6. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    7. Wang, Yang & Shukla, Ashish & Liu, Shuli, 2017. "A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1102-1116.
    8. Gabriele Lobaccaro & Malgorzata Maria Lisowska & Erika Saretta & Pierluigi Bonomo & Francesco Frontini, 2019. "A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale," Energies, MDPI, vol. 12(18), pages 1-28, September.
    9. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    10. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    11. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2018. "A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting," Applied Energy, Elsevier, vol. 228(C), pages 1454-1472.
    12. Eltaweel, Ahmad & SU, Yuehong, 2017. "Parametric design and daylighting: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1086-1103.
    13. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    14. Konstantoglou, Maria & Tsangrassoulis, Aris, 2016. "Dynamic operation of daylighting and shading systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 268-283.
    15. Salvia, Monica & Leo, Senatro Di & Nakos, Christos & Maras, Hrvoje & Panevski, Sashe & Fülöp, Orsolya & Papagianni, Stavroula & Tarevska, Zoia & Čeh, Danilo & Szabó, Eszter & Bodzsár, Borbala, 2015. "Creating a sustainable and resource efficient future: A methodological toolkit for municipalities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 480-496.
    16. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    17. Santos-Herrero, J.M. & Lopez-Guede, J.M. & Flores-Abascal, I., 2021. "Modeling, simulation and control tools for nZEB: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    18. Walker, Linus & Hofer, Johannes & Schlueter, Arno, 2019. "High-resolution, parametric BIPV and electrical systems modeling and design," Applied Energy, Elsevier, vol. 238(C), pages 164-179.
    19. Freitas, Jader de Sousa & Cronemberger, Joára & Soares, Raí Mariano & Amorim, Cláudia Naves David, 2020. "Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug," Renewable Energy, Elsevier, vol. 160(C), pages 1468-1479.
    20. Kanters, Jouri & Wall, Maria, 2016. "A planning process map for solar buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 173-185.
    21. Lydon, G.P. & Hofer, J. & Svetozarevic, B. & Nagy, Z. & Schlueter, A., 2017. "Coupling energy systems with lightweight structures for a net plus energy building," Applied Energy, Elsevier, vol. 189(C), pages 310-326.
    22. Ohlsson, K.E. Anders & Olofsson, Thomas, 2021. "Benchmarking the practice of validation and uncertainty analysis of building energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    23. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    24. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "Performance assessment method for roof-integrated TSSCs," Applied Energy, Elsevier, vol. 322(C).
    25. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2019. "Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality," Applied Energy, Elsevier, vol. 233, pages 424-442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bushra, Nayab, 2023. "Parametric model of window-integrated planer Cassegrain concentrator-based shading system (PCSS)," Applied Energy, Elsevier, vol. 340(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "A method for global potential assessment of roof integrated two-stage solar concentrators (TSSCs) at district scale," Applied Energy, Elsevier, vol. 326(C).
    2. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    3. Bushra, Nayab, 2023. "Parametric model of window-integrated planer Cassegrain concentrator-based shading system (PCSS)," Applied Energy, Elsevier, vol. 340(C).
    4. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "Performance assessment method for roof-integrated TSSCs," Applied Energy, Elsevier, vol. 322(C).
    5. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Matteo Formolli & Gabriele Lobaccaro & Jouri Kanters, 2021. "Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers," Energies, MDPI, vol. 14(24), pages 1-18, December.
    7. Thai, Clinton & Brouwer, Jack, 2021. "Challenges estimating distributed solar potential with utilization factors: California universities case study," Applied Energy, Elsevier, vol. 282(PB).
    8. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    9. Jing, Yifan & Zhu, Li & Yin, Baoquan & Li, Fangfang, 2023. "Evaluating the PV system expansion potential of existing integrated energy parks: A case study in North China," Applied Energy, Elsevier, vol. 330(PA).
    10. Kurdi, Yumna & Alkhatatbeh, Baraa J. & Asadi, Somayeh & Jebelli, Houtan, 2022. "A decision-making design framework for the integration of PV systems in the urban energy planning process," Renewable Energy, Elsevier, vol. 197(C), pages 288-304.
    11. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    14. Weifan Long & Xiaofei Chen & Qingsong Ma & Xindong Wei & Qiao Xi, 2022. "An Evaluation of the PV Integrated Dynamic Overhangs Based on Parametric Performance Design Method: A Case Study of a Student Apartment in China," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    15. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    16. Nicoletti, Francesco & Cucumo, Mario Antonio & Arcuri, Natale, 2023. "Building-integrated photovoltaics (BIPV): A mathematical approach to evaluate the electrical production of solar PV blinds," Energy, Elsevier, vol. 263(PD).
    17. Battini, Federico & Pernigotto, Giovanni & Gasparella, Andrea, 2023. "District-level validation of a shoeboxing simplification algorithm to speed-up Urban Building Energy Modeling simulations," Applied Energy, Elsevier, vol. 349(C).
    18. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    20. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.