IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1075-d1344925.html
   My bibliography  Save this article

Solar Wall Technology and Its Impact on Building Performance

Author

Listed:
  • Mehrdad Ghamari

    (School of Computing, Engineering and Digital Technologies, Teesside University, Tees Valley, Middlesbrough TS1 3BX, UK)

  • Senthilarasu Sundaram

    (School of Computing, Engineering and Digital Technologies, Teesside University, Tees Valley, Middlesbrough TS1 3BX, UK)

Abstract

Solar walls provide transformative solutions by harnessing solar energy to generate electricity, improve thermal comfort, and reduce energy consumption and emissions, contributing to zero-energy buildings and mitigating climate change. In hot and humid regions, solar walls can reduce indoor temperatures by 30% to 50%, significantly improving energy efficiency. Optimizing the performance of solar walls includes factors such as glazing, shading, solar orientation, ventilation, and catalytic techniques, allowing them to be adapted to different climates. Innovative solar wall variants that include photovoltaic panels, water storage, and phase-change materials offer multifunctionality and sustainability in building design and are in line with global energy efficiency and environmentally conscious goals. In addition, innovative solar wall variants that combine photovoltaic panels, water storage, and phase-change materials promise even more sustainability in building design. These multifunctional solar wall systems can efficiently heat, cool, and generate energy, further reducing a building’s environmental impact. Solar walls have the potential to significantly reduce heating energy consumption; align with global goals for energy-efficient, environmentally conscious, and climate-responsive building design; and offer dynamic and adaptable solutions for sustainable architecture.

Suggested Citation

  • Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Wall Technology and Its Impact on Building Performance," Energies, MDPI, vol. 17(5), pages 1-36, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1075-:d:1344925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Xing & Medina, Mario A. & Zhang, Xiaosong, 2013. "On the importance of the location of PCMs in building walls for enhanced thermal performance," Applied Energy, Elsevier, vol. 106(C), pages 72-78.
    2. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Li, Niansi & Gu, Tao & Xie, Hao & Ji, Jie & Liu, Xiaoyong & Yu, Bendong, 2023. "The kinetic and preliminary performance study on a novel solar photo-thermal catalytic hybrid Trombe-wall," Energy, Elsevier, vol. 269(C).
    4. Xu, Weiwei & Guo, Huiqing & Ma, Chengwei, 2022. "An active solar water wall for passive solar greenhouse heating," Applied Energy, Elsevier, vol. 308(C).
    5. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    6. Li, Yongcai & Liu, Shuli, 2014. "Experimental study on thermal performance of a solar chimney combined with PCM," Applied Energy, Elsevier, vol. 114(C), pages 172-178.
    7. Qing Yin & Hengyu Liu & Tianfu Zhou, 2023. "CiteSpace-Based Visualization Analysis on the Trombe Wall in Solar Buildings," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    8. Yu, Bendong & Li, Niansi & Xie, Hao & Ji, Jie, 2021. "The performance analysis on a novel purification-cleaning trombe wall based on solar thermal sterilization and thermal catalytic principles," Energy, Elsevier, vol. 225(C).
    9. Hong, Taehoon & Koo, Choongwan & Oh, Jeongyoon & Jeong, Kwangbok, 2017. "Nonlinearity analysis of the shading effect on the technical–economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 194(C), pages 467-480.
    10. Hami, K. & Draoui, B. & Hami, O., 2012. "The thermal performances of a solar wall," Energy, Elsevier, vol. 39(1), pages 11-16.
    11. Amjad Almusaed & Asaad Almssad & Asaad Alasadi & Ibrahim Yitmen & Sammera Al-Samaraee, 2023. "Assessing the Role and Efficiency of Thermal Insulation by the “BIO-GREEN PANEL” in Enhancing Sustainability in a Built Environment," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    12. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Impact of a Composite Trombe Wall Incorporating Phase Change Materials on the Thermal Behavior of an Individual House with Low Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-32, September.
    13. Du, Li & Ping, Lin & Yongming, Chen, 2020. "Study and analysis of air flow characteristics in Trombe wall," Renewable Energy, Elsevier, vol. 162(C), pages 234-241.
    14. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    15. Zhu, Na & Deng, Renjie & Hu, Pingfang & Lei, Fei & Xu, Linghong & Jiang, Zhangning, 2021. "Coupling optimization study of key influencing factors on PCM trombe wall for year thermal management," Energy, Elsevier, vol. 236(C).
    16. Rabani, Mehran & Kalantar, Vali & Rabani, Mehrdad, 2017. "Heat transfer analysis of a Trombe wall with a projecting channel design," Energy, Elsevier, vol. 134(C), pages 943-950.
    17. Mavrigiannaki, A. & Ampatzi, E., 2016. "Latent heat storage in building elements: A systematic review on properties and contextual performance factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 852-866.
    18. Bevilacqua, Piero & Benevento, Federica & Bruno, Roberto & Arcuri, Natale, 2019. "Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements?," Energy, Elsevier, vol. 185(C), pages 554-566.
    19. Dhanasingh Sivalinga Vijayan & Eugeniusz Koda & Arvindan Sivasuriyan & Jan Winkler & Parthiban Devarajan & Ramamoorthy Sanjay Kumar & Aleksandra Jakimiuk & Piotr Osinski & Anna Podlasek & Magdalena Da, 2023. "Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
    20. Pourshab, Nasrin & Tehrani, Mehdi Dadkhah & Toghraie, Davood & Rostami, Sara, 2020. "Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings," Energy, Elsevier, vol. 200(C).
    21. Barone, G. & Vassiliades, C. & Elia, C. & Savvides, A. & Kalogirou, S., 2023. "Design optimization of a solar system integrated double-skin façade for a clustered housing unit," Renewable Energy, Elsevier, vol. 215(C).
    22. Arabi, Pouria & Hamidpour, Mahmoud Reza & Yaghoubi, Mahmood & Arabi, Faraz, 2023. "Computational analysis of blind performance on natural ventilated double skin façade in winter," Energy, Elsevier, vol. 268(C).
    23. Li, Qing & Zhang, Lianying & Zhang, Limao & Wu, Xianguo, 2021. "Optimizing energy efficiency and thermal comfort in building green retrofit," Energy, Elsevier, vol. 237(C).
    24. Azhar Ghazali M. & Abdul Malek Abdul Rahman, 2012. "The Performance of Three Different Solar Panels for Solar Electricity Applying Solar Tracking Device under the Malaysian Climate Condition," Energy and Environment Research, Canadian Center of Science and Education, vol. 2(1), pages 235-235, June.
    25. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    26. Askari, Minoo & Jahangir, Mohammad Hossein, 2023. "Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew R. Smith & Mehrdad Ghamari & Sasireka Velusamy & Senthilarasu Sundaram, 2024. "Thin-Film Technologies for Sustainable Building-Integrated Photovoltaics," Energies, MDPI, vol. 17(24), pages 1-39, December.
    2. Robert Kowalik & Aleksandar Nešović & Dragan Cvetković & Agata Janaszek & Tomasz Kozłowski, 2024. "Numerical Simulation of Climate Change Impact on Energy, Environmental and Economic Performances of Small Single-Family Houses Equipped with Trombe Walls and Fixed Horizontal Overhangs," Energies, MDPI, vol. 17(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Yuling & Yang, Qianli & Fei, Fan & Li, Kai & Jiang, Yijun & Zhang, Yuanwen & Fukuda, Hiroatsu & Ma, Qingsong, 2024. "Review of Trombe wall technology: Trends in optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).
    3. Zhang, Zhigang & Liu, Qiaoli & Yao, Wanxiang & Zhang, Wei & Cao, Jingfu & He, Haiyan, 2022. "Research on temperature distribution characteristics and energy saving potential of wall implanted with heat pipes in heating season," Renewable Energy, Elsevier, vol. 195(C), pages 1037-1049.
    4. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Qian, Yu & Ji, Jie & Xie, Hao & Jia, Hengmin & Tang, Yayun & Mu, Yan, 2024. "Performance prediction of a novel disinfection-enhanced type Trombe wall with transverse fins," Energy, Elsevier, vol. 302(C).
    6. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    8. Qingsong Ma & Hiroatsu Fukuda & Takumi Kobatake & Myonghyang Lee, 2017. "Study of a Double-Layer Trombe Wall Assisted by a Temperature-Controlled DC Fan for Heating Seasons," Sustainability, MDPI, vol. 9(12), pages 1-12, November.
    9. Jerzy Szyszka & Piero Bevilacqua & Roberto Bruno, 2020. "An Innovative Trombe Wall for Winter Use: The Thermo-Diode Trombe Wall," Energies, MDPI, vol. 13(9), pages 1-15, May.
    10. Lech Lichołai & Aleksander Starakiewicz & Joanna Krasoń & Przemysław Miąsik, 2021. "The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material," Energies, MDPI, vol. 14(17), pages 1-19, August.
    11. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    12. Askari, Minoo & Jahangir, Mohammad Hossein, 2023. "Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials," Energy, Elsevier, vol. 284(C).
    13. Zhao, Xiaoqing & Song, Ye & Huang, Lin & Song, Zihao & Dong, Qichang & Qi, Jiacheng & Shi, Long, 2025. "Controlling double-skin façades with inclined louvers for natural ventilation: An experimental and theoretical study," Applied Energy, Elsevier, vol. 377(PB).
    14. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    15. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    16. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    17. Zheng-Yu, Shu & Ying-Xi, Huang & Jian-Wei, He & Zhang, Wang & Hai-Tao, Wang & Shan-Xun, Sun & Yang, Cai & Fu-Yun, Zhao, 2024. "Functional ventilation building envelope integrated photovoltaic modules and phrase change material in subtropical climate: An in-depth numerical investigation," Energy, Elsevier, vol. 307(C).
    18. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    19. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    20. Sergei, Kostikov & Shen, Chao & Jiang, Yiqiang, 2020. "A review of the current work potential of a trombe wall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1075-:d:1344925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.