IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1333-d148622.html
   My bibliography  Save this article

Urban Environment and Solar PV Performance: The Case of the Netherlands

Author

Listed:
  • Panagiotis Moraitis

    (Utrecht University, Copernicus Institute, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands)

  • Bala Bhavya Kausika

    (Utrecht University, Copernicus Institute, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands)

  • Nick Nortier

    (Utrecht University, Copernicus Institute, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands)

  • Wilfried Van Sark

    (Utrecht University, Copernicus Institute, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands)

Abstract

The modern urban landscape creates numerous challenges for the deployment of solar Photovoltaic (PV) technology. The large structures that dominate the skyline of every city create compactness, which, in turn, limits the available rooftop area and creates unpredicted shading patterns. The majority of research today relies on modern applications such as geographical information system (GIS) software to evaluate urban morphology; however, this approach is computationally intensive and therefore it is usually limited to a small geographical area. In this paper, we approach this issue from another perspective, utilizing the enormous amount of high resolution PV yield data that is available for the Netherlands. Our results not only correlate performance losses with urban compactness indicators, but they also reveal a significant seasonality effect that can reach 15% in some cases.

Suggested Citation

  • Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1333-:d:148622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olmo, F.J & Vida, J & Foyo, I & Castro-Diez, Y & Alados-Arboledas, L, 1999. "Prediction of global irradiance on inclined surfaces from horizontal global irradiance," Energy, Elsevier, vol. 24(8), pages 689-704.
    2. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    3. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    4. Sarralde, Juan José & Quinn, David James & Wiesmann, Daniel & Steemers, Koen, 2015. "Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London," Renewable Energy, Elsevier, vol. 73(C), pages 10-17.
    5. Leloux, Jonathan & Narvarte, Luis & Trebosc, David, 2012. "Review of the performance of residential PV systems in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1369-1376.
    6. Kanters, Jouri & Wall, Maria, 2016. "A planning process map for solar buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 173-185.
    7. Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Africa Lopez-Rey & Severo Campinez-Romero & Rosario Gil-Ortego & Antonio Colmenar-Santos, 2019. "Evaluation of Supply–Demand Adaptation of Photovoltaic–Wind Hybrid Plants Integrated into an Urban Environment," Energies, MDPI, vol. 12(9), pages 1-24, May.
    2. Teodora Melania Șoimoșan & Ligia Mihaela Moga & Gelu Danku & Aurica Căzilă & Daniela Lucia Manea, 2019. "Assessing the Energy Performance of Solar Thermal Energy for Heat Production in Urban Areas: A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    3. Wilfried van Sark, 2019. "Photovoltaic System Design and Performance," Energies, MDPI, vol. 12(10), pages 1-6, May.
    4. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    5. Antonio Barragán-Escandón & Esteban Zalamea-León & Julio Terrados-Cepeda, 2019. "Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability," Energies, MDPI, vol. 12(5), pages 1-26, February.
    6. Odysseas Tsafarakis & Kostas Sinapis & Wilfried G. J. H. M. van Sark, 2019. "A Time-Series Data Analysis Methodology for Effective Monitoring of Partially Shaded Photovoltaic Systems," Energies, MDPI, vol. 12(9), pages 1-18, May.
    7. Olga Palusci & Carlo Cecere, 2022. "Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas," Sustainability, MDPI, vol. 14(7), pages 1-44, March.
    8. Xiaoshu Zan & Ning Wu & Ruidong Xu & Mingliang Cui & Zhikai Jiang & Kai Ni & Mohammed Alkahtani, 2019. "Design and Analysis of a Novel Converter Topology for Photovoltaic Pumps Based on Switched Reluctance Motor," Energies, MDPI, vol. 12(13), pages 1-17, July.
    9. Wu, Yunna & Xu, Minjia & Tao, Yao & He, Jiaming & Liao, Yijia & Wu, Man, 2022. "A critical barrier analysis framework to the development of rural distributed PV in China," Energy, Elsevier, vol. 245(C).
    10. Slawomir Gulkowski, 2022. "Specific Yield Analysis of the Rooftop PV Systems Located in South-Eastern Poland," Energies, MDPI, vol. 15(10), pages 1-20, May.
    11. Lonergan, Katherine Emma & Sansavini, Giovanni, 2022. "Business structure of electricity distribution system operator and effect on solar photovoltaic uptake: An empirical case study for Switzerland," Energy Policy, Elsevier, vol. 160(C).
    12. Andres Calcabrini & Mirco Muttillo & Miro Zeman & Patrizio Manganiello & Olindo Isabella, 2023. "Electrical performance of a fully reconfigurable series-parallel photovoltaic module," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Meng, B. & Loonen, R.C.G.M. & Hensen, J.L.M., 2022. "Performance variability and implications for yield prediction of rooftop PV systems – Analysis of 246 identical systems," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    2. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).
    3. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    4. Meskiana Boulahia & Kahina Amal Djiar & Miguel Amado, 2021. "Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria," Energies, MDPI, vol. 14(6), pages 1-16, March.
    5. Odysseas Tsafarakis & Kostas Sinapis & Wilfried G. J. H. M. Van Sark, 2018. "PV System Performance Evaluation by Clustering Production Data to Normal and Non-Normal Operation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    6. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    7. Gonçalves, Juliana E. & Montazeri, Hamid & van Hooff, Twan & Saelens, Dirk, 2021. "Performance of building integrated photovoltaic facades: Impact of exterior convective heat transfer," Applied Energy, Elsevier, vol. 287(C).
    8. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    9. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    10. Danial Mohabat Doost & Alessandra Buffa & Grazia Brunetta & Stefano Salata & Guglielmina Mutani, 2020. "Mainstreaming Energetic Resilience by Morphological Assessment in Ordinary Land Use Planning. The Case Study of Moncalieri, Turin (Italy)," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    11. Thai, Clinton & Brouwer, Jack, 2021. "Challenges estimating distributed solar potential with utilization factors: California universities case study," Applied Energy, Elsevier, vol. 282(PB).
    12. Abel Tablada & Vesna Kosorić & Huajing Huang & Ian Kevin Chaplin & Siu-Kit Lau & Chao Yuan & Stephen Siu-Yu Lau, 2018. "Design Optimization of Productive Façades: Integrating Photovoltaic and Farming Systems at the Tropical Technologies Laboratory," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    13. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    14. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    15. Weiping Tang & Zhengjia Niu & Zili Wei & Liandong Zhu, 2022. "Sustainable Development of Eco-Cities: A Bibliometric Review," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    16. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    17. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    19. Dan Zhu & Dexuan Song & Jie Shi & Jia Fang & Yili Zhou, 2020. "The Effect of Morphology on Solar Potential of High-Density Residential Area: A Case Study of Shanghai," Energies, MDPI, vol. 13(9), pages 1-17, May.
    20. Bertrand, Cédric & Housmans, Caroline & Leloux, Jonathan & Journée, Michel, 2018. "Solar irradiation from the energy production of residential PV systems," Renewable Energy, Elsevier, vol. 125(C), pages 306-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1333-:d:148622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.