IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2409-d1651371.html
   My bibliography  Save this article

Development of a Visualization Platform for Power Generation Analysis in Urban Building-Integrated Photovoltaic Systems

Author

Listed:
  • Xi Chen

    (School of Design, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Engineering Research Center for Tech of Digital Lighting, Wuhan 430074, China
    The Key Laboratory of Lighting Interactive Service and Technology Ministry for Ministry of Culture and Tourism, Wuhan 430074, China)

  • Hai Long

    (China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Ye Xia

    (Evaluation Statistics and Information Technology Department, Hubei Academy of Scientific and Technical Information, Wuhan 430071, China)

Abstract

Urban high-density planning and the rise of super-high-rise buildings have significantly limited the development of distributed photovoltaic (PV) systems, creating an urgent need for optimized three-dimensional (3D) layout strategies within urban building spaces. Given that PV power generation is influenced by environmental factors and building spatial configurations, a 3D panoramic visualization tool is essential to intuitively display relevant data and support decision-making for government planners and PV operators. To address this, we developed a visualization platform to assess the integrated PV power generation potential of buildings at both city and single-building levels. The platform enables a 3D spatial panoramic display, where building surfaces are color-coded to clearly represent key performance metrics, such as power generation capacity, installation costs, and potential electricity savings. This intuitive visualization allows stakeholders to identify optimal PV installation areas and evaluate economic benefits effectively. This article details the implementation of the visualization platform across four key aspects: data generation and input, power generation and economic calculation, building model creation and data mapping, and visual interface design, aiming to facilitate the efficient planning and deployment of distributed photovoltaic systems in complex urban environments.

Suggested Citation

  • Xi Chen & Hai Long & Ye Xia, 2025. "Development of a Visualization Platform for Power Generation Analysis in Urban Building-Integrated Photovoltaic Systems," Energies, MDPI, vol. 18(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2409-:d:1651371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Liu, Ruimiao & Liu, Zhongbing & Xiong, Wei & Zhang, Ling & Zhao, Chengliang & Yin, Yingde, 2024. "Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts," Energy, Elsevier, vol. 288(C).
    3. Gholami, Hassan & Røstvik, Harald Nils, 2020. "Economic analysis of BIPV systems as a building envelope material for building skins in Europe," Energy, Elsevier, vol. 204(C).
    4. Liu, Jiangyang & Liu, Zhongbing & Wu, Yaling & Chen, Xi & Xiao, Hui & Zhang, Ling, 2022. "Impact of climate on photovoltaic battery energy storage system optimization," Renewable Energy, Elsevier, vol. 191(C), pages 625-638.
    5. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    2. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    3. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    4. Idiano D'Adamo & Alessandro Dell'Aguzzo & Marco Pruckner, 2024. "Residential photovoltaic and energy storage systems for sustainable development: An economic analysis applied to incentive mechanisms," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 84-100, February.
    5. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    6. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    7. Antonio Barragán-Escandón & Esteban Zalamea-León & Julio Terrados-Cepeda, 2019. "Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability," Energies, MDPI, vol. 12(5), pages 1-26, February.
    8. Ramos-Teodoro, Jerónimo & Álvarez, José Domingo & Torres, José Luis, 2024. "A methodology for feasibility analyses of district heating networks: A case study applied to greenhouse crops," Energy, Elsevier, vol. 301(C).
    9. Baoyu Wei & Lu Gao & Hongbao Zhao, 2025. "Study on the Seismic Stability of Urban Sewage Treatment and Underground Reservoir of an Abandoned Mine Pumped Storage Power Station," Sustainability, MDPI, vol. 17(12), pages 1-25, June.
    10. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    11. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Hassan Gholami & Harald Nils Røstvik & Koen Steemers, 2021. "The Contribution of Building-Integrated Photovoltaics (BIPV) to the Concept of Nearly Zero-Energy Cities in Europe: Potential and Challenges Ahead," Energies, MDPI, vol. 14(19), pages 1-22, September.
    13. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    14. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    15. Zhao, Weiping & Lv, Yukun & Zhou, Qingwen & Yan, Weiping, 2021. "Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance," Energy, Elsevier, vol. 233(C).
    16. Akihiko Takada & Hiromasa Ijuin & Masayuki Matsui & Tetsuo Yamada, 2023. "Seasonal Analysis and Capacity Planning of Solar Energy Demand-to-Supply Management: Case Study of a Logistics Distribution Center," Energies, MDPI, vol. 17(1), pages 1-23, December.
    17. Tang, Yayun & Ji, Jie & Xie, Hao & Zhang, Chengyan & Tian, Xinyi, 2023. "Single- and double-inlet PV curtain wall systems using novel heat recovery technique for PV cooling, fresh and supply air handling: Design and performance assessment," Energy, Elsevier, vol. 282(C).
    18. Xiaoshu Zan & Ning Wu & Ruidong Xu & Mingliang Cui & Zhikai Jiang & Kai Ni & Mohammed Alkahtani, 2019. "Design and Analysis of a Novel Converter Topology for Photovoltaic Pumps Based on Switched Reluctance Motor," Energies, MDPI, vol. 12(13), pages 1-17, July.
    19. Andrew R. Smith & Mehrdad Ghamari & Sasireka Velusamy & Senthilarasu Sundaram, 2024. "Thin-Film Technologies for Sustainable Building-Integrated Photovoltaics," Energies, MDPI, vol. 17(24), pages 1-39, December.
    20. Sojung Kim & Sumin Kim, 2023. "Economic Feasibility Comparison between Building-Integrated Photovoltaics and Green Systems in Northeast Texas," Energies, MDPI, vol. 16(12), pages 1-14, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2409-:d:1651371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.