IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v214y2023icp74-95.html
   My bibliography  Save this article

Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells

Author

Listed:
  • Calise, Francesco
  • Cappiello, Francesco Liberato
  • Cimmino, Luca
  • Dentice d’Accadia, Massimo
  • Vicidomini, Maria

Abstract

Smart energy networks including renewables and energy storage systems are a promising technology for improving the sustainability of residential districts and private mobility. In this work, a smart energy network is analyzed, based on photovoltaic panels, electric energy storage systems, heat pumps and electric vehicles. The system consists of a fully electric residential district, where air-to-air heat pumps are used for space heating and cooling and air-to-water heat pumps provide domestic hot water; a photovoltaic field meets the power load of the residential district, including charging stations for electric vehicles. A district electric energy storage system is included for balancing power supply and demand: two storage technologies are considered and compared in this work: a lithium-ion battery and a reversible solid oxide fuel cell. These systems are modelled and dynamically simulated in Transient Systems Simulation Program (TRNSYS) 18. A case study is discussed, where the proposed systems exhibit promising results in terms of primary energy saving: for example, the renewable energy matches almost 74–77% of the district primary energy demand for the analyzed smart energy districts. Moreover, both the proposed systems achieve very profitable results with a payback period of 3.5–4.4 years. Both the analyzed layouts achieve very similar results.

Suggested Citation

  • Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
  • Handle: RePEc:eee:renene:v:214:y:2023:i:c:p:74-95
    DOI: 10.1016/j.renene.2023.05.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300722X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yi, Feng & E, Jiaqiang & Zhang, Bin & Zuo, Hongyan & Wei, Kexiang & Chen, Jingwei & Zhu, Hong & Zhu, Hao & Deng, Yuanwang, 2022. "Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method," Renewable Energy, Elsevier, vol. 181(C), pages 472-489.
    2. Al-Mufachi, Naser A. & Shah, Nilay, 2022. "The role of hydrogen and fuel cell technology in providing security for the UK energy system," Energy Policy, Elsevier, vol. 171(C).
    3. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage," Energies, MDPI, vol. 14(22), pages 1-20, November.
    4. Mehigan, L. & Ó Gallachóir, Brian & Deane, Paul, 2022. "Batteries and interconnection: Competing or complementary roles in the decarbonisation of the European power system?," Renewable Energy, Elsevier, vol. 196(C), pages 1229-1240.
    5. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    6. Jaiswal, Abhishek, 2017. "Lithium-ion battery based renewable energy solution for off-grid electricity: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 922-934.
    7. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    8. Hajimolana, S. Ahmad & Hussain, M. Azlan & Daud, W.M. Ashri Wan & Soroush, M. & Shamiri, A., 2011. "Mathematical modeling of solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1893-1917, May.
    9. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    10. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    11. Hao Lan & Guiyun Wang & Kun Zhao & Yuntang He & Tianlei Zheng, 2022. "Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles," Energies, MDPI, vol. 15(19), pages 1-13, October.
    12. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    13. Ahmadian, Ali & Sedghi, Mahdi & Elkamel, Ali & Fowler, Michael & Aliakbar Golkar, Masoud, 2018. "Plug-in electric vehicle batteries degradation modeling for smart grid studies: Review, assessment and conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2609-2624.
    14. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    15. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    16. He, Yi & Guo, Su & Dong, Peixin & Wang, Chen & Huang, Jing & Zhou, Jianxu, 2022. "Techno-economic comparison of different hybrid energy storage systems for off-grid renewable energy applications based on a novel probabilistic reliability index," Applied Energy, Elsevier, vol. 328(C).
    17. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    18. Tooryan, Fatemeh & HassanzadehFard, Hamid & Collins, Edward R. & Jin, Shuangshuang & Ramezani, Bahram, 2020. "Smart integration of renewable energy resources, electrical, and thermal energy storage in microgrid applications," Energy, Elsevier, vol. 212(C).
    19. Wu, Yaling & Liu, Zhongbing & Li, Benjia & Liu, Jiangyang & Zhang, Ling, 2022. "Energy management strategy and optimal battery capacity for flexible PV-battery system under time-of-use tariff," Renewable Energy, Elsevier, vol. 200(C), pages 558-570.
    20. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    21. Calise, Francesco & Dentice d'Accadia, Massimo & Piacentino, Antonio, 2014. "A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 67(C), pages 129-148.
    22. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    23. Nastasi, Benedetto & Mazzoni, Stefano & Groppi, Daniele & Romagnoli, Alessandro & Astiaso Garcia, Davide, 2021. "Optimized integration of Hydrogen technologies in Island energy systems," Renewable Energy, Elsevier, vol. 174(C), pages 850-864.
    24. Maggio, G. & Squadrito, G. & Nicita, A., 2022. "Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route," Applied Energy, Elsevier, vol. 306(PA).
    25. Zeng, Jing & Liu, Sifeng, 2023. "Forecasting the sustainable classified recycling of used lithium batteries by gray Graphical Evaluation and Review Technique," Renewable Energy, Elsevier, vol. 202(C), pages 602-612.
    26. Calise, Francesco & Cappiello, Francesco Liberato & Cartenì, Armando & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2019. "A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 97-114.
    27. Calise, Francesco & Cappiello, Francesco L. & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2021. "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renewable Energy, Elsevier, vol. 175(C), pages 532-549.
    28. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    29. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    30. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    31. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    32. Liu, Jiangyang & Liu, Zhongbing & Wu, Yaling & Chen, Xi & Xiao, Hui & Zhang, Ling, 2022. "Impact of climate on photovoltaic battery energy storage system optimization," Renewable Energy, Elsevier, vol. 191(C), pages 625-638.
    33. Hui Xing & Charles Stuart & Stephen Spence & Hua Chen, 2021. "Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    34. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    35. Zhang, Fan & Wang, Bowen & Gong, Zhichao & Zhang, Xiyuan & Qin, Zhikun & Jiao, Kui, 2023. "Development of photovoltaic-electrolyzer-fuel cell system for hydrogen production and power generation," Energy, Elsevier, vol. 263(PA).
    36. Hernandez, Drake D. & Gençer, Emre, 2021. "Techno-economic analysis of balancing California’s power system on a seasonal basis: Hydrogen vs. lithium-ion batteries," Applied Energy, Elsevier, vol. 300(C).
    37. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    38. Shaari, N. & Kamarudin, S.K., 2017. "Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 862-870.
    39. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    40. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    41. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    42. Mayyas, Ahmad & Chadly, Assia & Amer, Saed Talib & Azar, Elie, 2022. "Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes," Energy, Elsevier, vol. 239(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    2. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Maria Vicidomini, 2020. "Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations," Energies, MDPI, vol. 13(9), pages 1-29, May.
    3. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: A dynamic approach," Energy, Elsevier, vol. 208(C).
    4. Calise, Francesco & Cappiello, Francesco L. & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2021. "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renewable Energy, Elsevier, vol. 175(C), pages 532-549.
    5. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    6. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    8. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    9. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    10. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    11. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    12. Hassan, Masood Ul & Saha, Sajeeb & Haque, Md Enamul, 2021. "PVAnalytX: A MATLAB toolkit for techno-economic analysis and performance evaluation of rooftop PV systems," Energy, Elsevier, vol. 223(C).
    13. E, Shengxin & Cui, Yaxin & Liu, Yuxian & Yin, Huichun, 2023. "Effects of the different phase change materials on heat dissipation performances of the ternary polymer Li-ion battery pack in hot climate," Energy, Elsevier, vol. 282(C).
    14. Camille Soenen & Vincent Reinbold & Simon Meunier & Judith A. Cherni & Arouna Darga & Philippe Dessante & Loïc Quéval, 2021. "Comparison of Tank and Battery Storages for Photovoltaic Water Pumping," Energies, MDPI, vol. 14(9), pages 1-16, April.
    15. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    16. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Wu, Yaling & Liu, Zhongbing & Li, Benjia & Liu, Jiangyang & Zhang, Ling, 2022. "Energy management strategy and optimal battery capacity for flexible PV-battery system under time-of-use tariff," Renewable Energy, Elsevier, vol. 200(C), pages 558-570.
    19. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    20. Markus S. Wahl & Lena Spitthoff & Harald I. Muri & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "The Importance of Optical Fibres for Internal Temperature Sensing in Lithium-ion Batteries during Operation," Energies, MDPI, vol. 14(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:214:y:2023:i:c:p:74-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.