IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p538-d1023732.html
   My bibliography  Save this article

Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union

Author

Listed:
  • David Borge-Diez

    (Department of Electrical Automation and System Engineering, University of León, 24004 León, Spain)

  • Enrique Rosales-Asensio

    (Department of Electrical Engineering, School of Industrial and Civil Engineering, ULPGC, Campus de Tafira, 35017 Canary Islands, Spain)

  • Emin Açıkkalp

    (Department of Mechanical Engineering, Engineering Faculty, Eskisehir Technical University, 26470 Eskisehir, Turkey)

  • Daniel Alonso-Martínez

    (Department of Business Management and Economics, Faculty of Economics and Business Studies, Campus de Vegazana, University of León, 24071 León, Spain)

Abstract

Energy Intensive Industries (EII) are high users of energy and some of these facilities are extremely dependent on Natural Gas for processing heat production. In European countries, where Natural Gas is mostly imported from external producers, the increase in international Natural Gas prices is making it difficult for some industries to deliver the required financial results. Therefore, they are facing complex challenges that could cause their delocalization in regions with lower energy costs. European countries lack on-site Natural Gas resources and the plans to reduce greenhouse gas emissions in the industrial sector make it necessary to find an alternative. Many different processes cannot be electrified, and in these cases, synthetic methane is one of the solutions and also represents an opportunity to reduce external energy supply dependency. This study analyzes the current development of power-to-gas technological solutions that could be implemented in large industrial consumers to produce Synthetic Methane using Green Hydrogen as a raw source and using Renewable Energy electricity mainly produced with photovoltaic or wind energy. The study also reviews the triple bottom line impact and the current development status and associated costs for each key component of a power-to-gas plant and the requirements to be fulfilled in the coming years to develop a cost-competitive solution available for commercial use.

Suggested Citation

  • David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:538-:d:1023732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Mufachi, Naser A. & Shah, Nilay, 2022. "The role of hydrogen and fuel cell technology in providing security for the UK energy system," Energy Policy, Elsevier, vol. 171(C).
    2. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Bailera, Manuel & Espatolero, Sergio & Lisbona, Pilar & Romeo, Luis M., 2017. "Power to gas-electrochemical industry hybrid systems: A case study," Applied Energy, Elsevier, vol. 202(C), pages 435-446.
    5. Liu, Haiying & Khan, Irfan & Zakari, Abdulrasheed & Alharthi, Majed, 2022. "Roles of trilemma in the world energy sector and transition towards sustainable energy: A study of economic growth and the environment," Energy Policy, Elsevier, vol. 170(C).
    6. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    7. Isiksal, Aliya Zhakanova & Assi, Ala Fathi, 2022. "Determinants of sustainable energy demand in the European economic area: Evidence from the PMG-ARDL model," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    9. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    10. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    11. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergii V. Sagin & Sergii S. Sagin & Volodymyr Madey, 2023. "Analysis of methods of managing the environmental safety of the navigation passage of ships of maritime transport," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 4(3(72)), pages 33-42, August.
    2. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    4. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    5. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    6. Koponen, Joonas & Ruuskanen, Vesa & Hehemann, Michael & Rauls, Edward & Kosonen, Antti & Ahola, Jero & Stolten, Detlef, 2020. "Effect of power quality on the design of proton exchange membrane water electrolysis systems," Applied Energy, Elsevier, vol. 279(C).
    7. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    8. George, Jan Frederick & Müller, Viktor Paul & Winkler, Jenny & Ragwitz, Mario, 2022. "Is blue hydrogen a bridging technology? - The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany," Energy Policy, Elsevier, vol. 167(C).
    9. Rishabh Agarwal, 2022. "Economic Analysis of Renewable Power-to-Gas in Norway," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    10. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    13. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    14. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    15. József Magyari & Krisztina Hegedüs & Botond Sinóros-Szabó, 2022. "Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-19, September.
    16. Cesare Saccani & Marco Pellegrini & Alessandro Guzzini, 2020. "Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy," Energies, MDPI, vol. 13(18), pages 1-29, September.
    17. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    19. Hesel, Philipp & Braun, Sebastian & Zimmermann, Florian & Fichtner, Wolf, 2022. "Integrated modelling of European electricity and hydrogen markets," Applied Energy, Elsevier, vol. 328(C).
    20. Lena Maria Ringsgwandl & Johannes Schaffert & Nils Brücken & Rolf Albus & Klaus Görner, 2022. "Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany," Energies, MDPI, vol. 15(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:538-:d:1023732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.