IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5591-d630427.html
   My bibliography  Save this article

Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe

Author

Listed:
  • Máté Zavarkó

    (Department of Management and Organization, Corvinus University of Budapest, 1093 Budapest, Hungary
    Power-to-Gas Hungary Kft, 5000 Szolnok, Hungary)

  • Attila R. Imre

    (Department of Energy, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
    Centre for Energy Research, Department of Thermohydraulics, Konkoly Thege Str. 29-33, 1121 Budapest, Hungary)

  • Gábor Pörzse

    (Corvinus Innovation Research Center, Corvinus University of Budapest, 1093 Budapest, Hungary)

  • Zoltán Csedő

    (Department of Management and Organization, Corvinus University of Budapest, 1093 Budapest, Hungary
    Power-to-Gas Hungary Kft, 5000 Szolnok, Hungary)

Abstract

The power-to-methane technology is promising for long-term, high-capacity energy storage. Currently, there are two different industrial-scale methanation methods: the chemical one (based on the Sabatier reaction) and the biological one (using microorganisms for the conversion). The second method can be used not only to methanize the mixture of pure hydrogen and carbon dioxide but also to methanize the hydrogen and carbon dioxide content of low-quality gases, such as biogas or deponia gas, enriching them to natural gas quality; therefore, the applicability of biomethanation is very wide. In this paper, we present an overview of the existing and planned industrial-scale biomethanation facilities in Europe, as well as review the facilities closed in recent years after successful operation in the light of the scientific and socioeconomic context. To outline key directions for further developments, this paper interconnects biomethanation projects with the competitiveness of the energy sector in Europe for the first time in the literature. The results show that future projects should have an integrative view of electrolysis and biomethanation, as well as hydrogen storage and utilization with carbon capture and utilization (HSU&CCU) to increase sectoral competitiveness by enhanced decarbonization.

Suggested Citation

  • Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5591-:d:630427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    2. Wang, Ligang & Pérez-Fortes, Mar & Madi, Hossein & Diethelm, Stefan & herle, Jan Van & Maréchal, François, 2018. "Optimal design of solid-oxide electrolyzer based power-to-methane systems: A comprehensive comparison between steam electrolysis and co-electrolysis," Applied Energy, Elsevier, vol. 211(C), pages 1060-1079.
    3. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    4. David J. TEECE, 2008. "Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy," World Scientific Book Chapters, in: The Transfer And Licensing Of Know-How And Intellectual Property Understanding the Multinational Enterprise in the Modern World, chapter 5, pages 67-87, World Scientific Publishing Co. Pte. Ltd..
    5. Zoltán Csedő & Botond Sinóros-Szabó & Máté Zavarkó, 2020. "Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology," Energies, MDPI, vol. 13(18), pages 1-21, September.
    6. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    7. Patrick Möbius & Wilhelm Althammer, 2020. "Sustainable competitiveness: a spatial econometric analysis of European regions," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(3), pages 453-480, February.
    8. Gábor Pintér & Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & Zoltán Birkner, 2020. "The Economic and Geographical Aspects of the Status of Small-Scale Photovoltaic Systems in Hungary—A Case Study," Energies, MDPI, vol. 13(13), pages 1-22, July.
    9. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    10. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    11. Ceballos-Escalera, Alba & Molognoni, Daniele & Bosch-Jimenez, Pau & Shahparasti, Mahdi & Bouchakour, Salim & Luna, Alvaro & Guisasola, Albert & Borràs, Eduard & Della Pirriera, Monica, 2020. "Bioelectrochemical systems for energy storage: A scaled-up power-to-gas approach," Applied Energy, Elsevier, vol. 260(C).
    12. Patrick K. Kimes & Yufeng Liu & David Neil Hayes & James Stephen Marron, 2017. "Statistical significance for hierarchical clustering," Biometrics, The International Biometric Society, vol. 73(3), pages 811-821, September.
    13. James Boyer, 2020. "Toward an Evolutionary and Sustainability Perspective of the Innovation Ecosystem: Revisiting the Panarchy Model," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    14. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    15. Kristóf Kummer & Attila R. Imre, 2021. "Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology," Energies, MDPI, vol. 14(11), pages 1-13, June.
    16. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    17. David J. Teece, 2007. "Explicating dynamic capabilities: the nature and microfoundations of (sustainable) enterprise performance," Strategic Management Journal, Wiley Blackwell, vol. 28(13), pages 1319-1350, December.
    18. László Berényi & Zoltán Birkner & Nikolett Deutsch, 2020. "A Multidimensional Evaluation of Renewable and Nuclear Energy among Higher Education Students," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    19. Bareschino, P. & Mancusi, E. & Urciuolo, M. & Paulillo, A. & Chirone, R. & Pepe, F., 2020. "Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    20. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    21. D’Adamo, Idiano & Falcone, Pasquale Marcello & Huisingh, Donald & Morone, Piergiuseppe, 2021. "A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?," Renewable Energy, Elsevier, vol. 163(C), pages 1660-1672.
    22. Hidalgo, D. & Martín-Marroquín, J.M., 2020. "Power-to-methane, coupling CO2 capture with fuel production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    23. Bailera, Manuel & Espatolero, Sergio & Lisbona, Pilar & Romeo, Luis M., 2017. "Power to gas-electrochemical industry hybrid systems: A case study," Applied Energy, Elsevier, vol. 202(C), pages 435-446.
    24. Giglio, Emanuele & Pirone, Raffaele & Bensaid, Samir, 2021. "Dynamic modelling of methanation reactors during start-up and regulation in intermittent power-to-gas applications," Renewable Energy, Elsevier, vol. 170(C), pages 1040-1051.
    25. Fagerberg, Jan, 1996. "Technology and Competitiveness," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 12(3), pages 39-51, Autumn.
    26. Wang, Ligang & Zhang, Yumeng & Pérez-Fortes, Mar & Aubin, Philippe & Lin, Tzu-En & Yang, Yongping & Maréchal, François & Van herle, Jan, 2020. "Reversible solid-oxide cell stack based power-to-x-to-power systems: Comparison of thermodynamic performance," Applied Energy, Elsevier, vol. 275(C).
    27. Gutiérrez-Martín, F. & Rodríguez-Antón, L.M. & Legrand, M., 2020. "Renewable power-to-gas by direct catalytic methanation of biogas," Renewable Energy, Elsevier, vol. 162(C), pages 948-959.
    28. Fózer, Dániel & Volanti, Mirco & Passarini, Fabrizio & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Mizsey, Péter, 2020. "Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification," Applied Energy, Elsevier, vol. 280(C).
    29. Morone, Piergiuseppe & Caferra, Rocco & D'Adamo, Idiano & Falcone, Pasquale Marcello & Imbert, Enrica & Morone, Andrea, 2021. "Consumer willingness to pay for bio-based products: Do certifications matter?," International Journal of Production Economics, Elsevier, vol. 240(C).
    30. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    31. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    32. James Boyer, 2020. "Toward an Evolutionary and Sustainability Perspective of the Innovation Ecosystem: Revisiting the Panarchy Model," Post-Print hal-03131608, HAL.
    33. Inkeri, Eero & Tynjälä, Tero & Laari, Arto & Hyppänen, Timo, 2018. "Dynamic one-dimensional model for biological methanation in a stirred tank reactor," Applied Energy, Elsevier, vol. 209(C), pages 95-107.
    34. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    35. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Marín, Julián & Romeo, Luis M., 2021. "Lab-scale experimental tests of power to gas-oxycombustion hybridization: System design and preliminary results," Energy, Elsevier, vol. 226(C).
    36. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    37. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    38. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    39. Aram Mohammed Ahmed & László Kondor & Attila R. Imre, 2021. "Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateusz Wnukowski, 2023. "Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products," Energies, MDPI, vol. 16(18), pages 1-34, September.
    2. Zoltán Csedő & József Magyari & Máté Zavarkó, 2022. "Dynamic Corporate Governance, Innovation, and Sustainability: Post-COVID Period," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    3. József Magyari & Krisztina Hegedüs & Botond Sinóros-Szabó, 2022. "Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    2. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    3. Fózer, Dániel & Volanti, Mirco & Passarini, Fabrizio & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Mizsey, Péter, 2020. "Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification," Applied Energy, Elsevier, vol. 280(C).
    4. Zoltán Csedő & Botond Sinóros-Szabó & Máté Zavarkó, 2020. "Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology," Energies, MDPI, vol. 13(18), pages 1-21, September.
    5. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    6. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    7. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    10. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    11. Guilera, Jordi & Andreu, Teresa & Basset, Núria & Boeltken, Tim & Timm, Friedemann & Mallol, Ignasi & Morante, Joan Ramon, 2020. "Synthetic natural gas production from biogas in a waste water treatment plant," Renewable Energy, Elsevier, vol. 146(C), pages 1301-1308.
    12. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Katla, Daria & Węcel, Daniel & Jurczyk, Michał & Skorek-Osikowska, Anna, 2023. "Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG)," Energy, Elsevier, vol. 263(PD).
    14. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    15. Jeanmonod, Guillaume & Wang, Ligang & Diethelm, Stefan & Maréchal, François & Van herle, Jan, 2019. "Trade-off designs of power-to-methane systems via solid-oxide electrolyzer and the application to biogas upgrading," Applied Energy, Elsevier, vol. 247(C), pages 572-581.
    16. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    17. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    18. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    19. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5591-:d:630427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.