IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3265-d567888.html
   My bibliography  Save this article

Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology

Author

Listed:
  • Kristóf Kummer

    (Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary)

  • Attila R. Imre

    (Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
    Department of Thermohydraulics, Centre for Energy Research, POB. 49, H-1525 Budapest, Hungary)

Abstract

The time-range of applicability of various energy-storage technologies are limited by self-discharge and other inevitable losses. While batteries and hydrogen are useful for storage in a time-span ranging from hours to several days or even weeks, for seasonal or multi-seasonal storage, only some traditional and quite costly methods can be used (like pumped-storage plants, Compressed Air Energy Storage or energy tower). In this paper, we aim to show that while the efficiency of energy recovery of Power-to-Methane technology is lower than for several other methods, due to the low self-discharge and negligible standby losses, it can be a suitable and cost-effective solution for seasonal and multi-seasonal energy storage.

Suggested Citation

  • Kristóf Kummer & Attila R. Imre, 2021. "Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology," Energies, MDPI, vol. 14(11), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3265-:d:567888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zoltán Csedő & Botond Sinóros-Szabó & Máté Zavarkó, 2020. "Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology," Energies, MDPI, vol. 13(18), pages 1-21, September.
    2. Vera, D. & Baccioli, A. & Jurado, F. & Desideri, U., 2020. "Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification," Renewable Energy, Elsevier, vol. 162(C), pages 1399-1414.
    3. Altun, A.F. & Kilic, M., 2020. "Thermodynamic performance evaluation of a geothermal ORC power plant," Renewable Energy, Elsevier, vol. 148(C), pages 261-274.
    4. Györke, Gábor & Deiters, Ulrich K. & Groniewsky, Axel & Lassu, Imre & Imre, Attila R., 2018. "Novel classification of pure working fluids for Organic Rankine Cycle," Energy, Elsevier, vol. 145(C), pages 288-300.
    5. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    6. Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, vol. 10(3), pages 1-18, March.
    7. Albert Hiesl & Amela Ajanovic & Reinhard Haas, 2020. "On current and future economics of electricity storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1176-1192, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. German Dominguez-Gonzalez & Jose Ignacio Muñoz-Hernandez & Derek Bunn & Carlos Jesus Garcia-Checa, 2022. "Integration of Hydrogen and Synthetic Natural Gas within Legacy Power Generation Facilities," Energies, MDPI, vol. 15(12), pages 1-27, June.
    2. Julian David Hunt & Behnam Zakeri & Andreas Nascimento & Diego Augusto de Jesus Pacheco & Epari Ritesh Patro & Bojan Đurin & Márcio Giannini Pereira & Walter Leal Filho & Yoshihide Wada, 2023. "Isothermal Deep Ocean Compressed Air Energy Storage: An Affordable Solution for Seasonal Energy Storage," Energies, MDPI, vol. 16(7), pages 1-18, March.
    3. Attila R. Imre, 2022. "Seasonal Energy Storage with Power-to-Methane Technology," Energies, MDPI, vol. 15(3), pages 1-2, January.
    4. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    5. József Magyari & Krisztina Hegedüs & Botond Sinóros-Szabó, 2022. "Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Toselli & Florian Heberle & Dieter Brüggemann, 2019. "Techno-Economic Analysis of Hybrid Binary Cycles with Geothermal Energy and Biogas Waste Heat Recovery," Energies, MDPI, vol. 12(10), pages 1-18, May.
    2. Attila R. Imre & Sindu Daniarta & Przemysław Błasiak & Piotr Kolasiński, 2023. "Design, Integration, and Control of Organic Rankine Cycles with Thermal Energy Storage and Two-Phase Expansion System Utilizing Intermittent and Fluctuating Heat Sources—A Review," Energies, MDPI, vol. 16(16), pages 1-25, August.
    3. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    4. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    5. Liu, Jian & Xu, Yantao & Zhang, Yaning & Shuai, Yong & Li, Bingxi, 2022. "Multi-objective optimization of low temperature cooling water organic Rankine cycle using dual pinch point temperature difference technologies," Energy, Elsevier, vol. 240(C).
    6. Marian Piwowarski & Krzysztof Kosowski & Marcin Richert, 2023. "Organic Supercritical Thermodynamic Cycles with Isothermal Turbine," Energies, MDPI, vol. 16(12), pages 1-17, June.
    7. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    8. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.
    9. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
    10. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    11. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    12. Christos S. Ioakimidis & Alberto Murillo-Marrodán & Ali Bagheri & Dimitrios Thomas & Konstantinos N. Genikomsakis, 2019. "Life Cycle Assessment of a Lithium Iron Phosphate (LFP) Electric Vehicle Battery in Second Life Application Scenarios," Sustainability, MDPI, vol. 11(9), pages 1-14, May.
    13. Olgun Aydin & Cansu Altunbas & Elvan Hayat, 2021. "Using Text Mining Techniques to Understand the Economic Effects of COVID-19 Pandemic," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 4), pages 760-774.
    14. Arjuna Nebel & Julián Cantor & Sherif Salim & Amro Salih & Dixit Patel, 2022. "The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO 2 Emission Restrictions," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    15. Phuong-Ha La & Sung-Jin Choi, 2020. "Novel Dynamic Resistance Equalizer for Parallel-Connected Battery Configurations," Energies, MDPI, vol. 13(13), pages 1-17, June.
    16. Esra Özdemir Küçük & Muhsin Kılıç, 2023. "Exergoeconomic and Exergetic Sustainability Analysis of a Combined Dual-Pressure Organic Rankine Cycle and Vapor Compression Refrigeration Cycle," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    17. Hoarau, Quentin & Lorang, Etienne, 2022. "An assessment of the European regulation on battery recycling for electric vehicles," Energy Policy, Elsevier, vol. 162(C).
    18. Attila R. Imre, 2022. "Seasonal Energy Storage with Power-to-Methane Technology," Energies, MDPI, vol. 15(3), pages 1-2, January.
    19. Ihsan Hamawand, 2023. "Energy Consumption in Water/Wastewater Treatment Industry—Optimisation Potentials," Energies, MDPI, vol. 16(5), pages 1-3, March.
    20. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.

    More about this item

    Keywords

    Power-to-Gas; Power-to-Fuel; P2M; P2G; P2F; biomethanization;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3265-:d:567888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.