IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3750-d1702183.html
   My bibliography  Save this article

A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles

Author

Listed:
  • Qi Zhang

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

  • Yunlong Shang

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

  • Yan Li

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

  • Rui Zhu

    (School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China)

Abstract

The core powertrain components of electric vehicles (EVs) and hybrid electric vehicles (HEVs) are the power batteries and battery management system (BMS), jointly determining the performance, safety, and economy of the vehicle. This review offers a comprehensive overview of the evolution and current advancements in power battery and BMS technology for electric vehicles (EVs). It emphasizes product upgrades and replacements while also analyzing future research hotspots and development trends driven by the increasing demand for EVs and hybrid electric vehicles (HEVs). This review aims to give recommendations and support for the future development of power batteries and BMSs that are widely used in EVs, HEVs, and energy storage systems, which will lead to industry and research progress.

Suggested Citation

  • Qi Zhang & Yunlong Shang & Yan Li & Rui Zhu, 2025. "A Concise Review of Power Batteries and Battery Management Systems for Electric and Hybrid Vehicles," Energies, MDPI, vol. 18(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3750-:d:1702183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammed Cavus & Dilum Dissanayake & Margaret Bell, 2025. "Next Generation of Electric Vehicles: AI-Driven Approaches for Predictive Maintenance and Battery Management," Energies, MDPI, vol. 18(5), pages 1-41, February.
    2. T. N. V. Krishna & Seelam V. S. V. Prabhu Deva Kumar & Sunkara Srinivasa Rao & Liuchen Chang, 2024. "Powering the Future: Advanced Battery Management Systems (BMS) for Electric Vehicles," Energies, MDPI, vol. 17(14), pages 1-18, July.
    3. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    4. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    5. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    6. Yongjing Li & Wenhui Pei & Qi Zhang, 2022. "Improved Whale Optimization Algorithm Based on Hybrid Strategy and Its Application in Location Selection for Electric Vehicle Charging Stations," Energies, MDPI, vol. 15(19), pages 1-25, September.
    7. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    8. Di Xu & Wenhui Pei & Qi Zhang, 2022. "Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience," Energies, MDPI, vol. 15(14), pages 1-16, July.
    9. Bohan Shao & Jun Zhong & Jie Tian & Yan Li & Xiyu Chen & Weilin Dou & Qiangqiang Liao & Chunyan Lai & Taolin Lu & Jingying Xie, 2025. "State-of-Health Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy Features and Fusion Interpretable Deep Learning Framework," Energies, MDPI, vol. 18(6), pages 1-25, March.
    10. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    11. Zhi Cao & Wei Gao & Yuhong Fu & Chris Mi, 2024. "Wireless Battery Management Systems: Innovations, Challenges, and Future Perspectives," Energies, MDPI, vol. 17(13), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    2. Yiwei You & Dexin Zhang & Zhifeng Wu & Tie-Yu Lü & Xinrui Cao & Yang Sun & Zi-Zhong Zhu & Shunqing Wu, 2025. "Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    4. Yi Wu & Saurabh Saxena & Yinjiao Xing & Youren Wang & Chuan Li & Winco K. C. Yung & Michael Pecht, 2018. "Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography," Energies, MDPI, vol. 11(4), pages 1-22, April.
    5. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    6. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    7. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    8. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    9. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    11. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    13. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    17. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    20. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3750-:d:1702183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.