IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1602-d339862.html
   My bibliography  Save this article

High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure

Author

Listed:
  • Jun-Ping Hu

    (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China)

  • Hang Sheng

    (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China)

  • Qi Deng

    (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China)

  • Qiang Ma

    (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China)

  • Jun Liu

    (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China)

  • Xiong-Wei Wu

    (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China)

  • Jun-Jie Liu

    (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
    School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Yu-Ping Wu

    (School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China)

Abstract

LiNi x Co y Mn z O 2 (LNCM)-layered materials are considered the most promising cathode for high-energy lithium ion batteries, but suffer from poor rate capability and short lifecycle. In addition, the LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM 111) is considered one of the most widely used LNCM cathodes because of its high energy density and good safety. Herein, a kind of NCM 111 with semi-closed structure was designed by controlling the amount of urea, which possesses high rate capability and long lifespan, exhibiting 140.9 mAh·g −1 at 0.85 A·g −1 and 114.3 mAh·g −1 at 1.70 A·g −1 , respectively. The semi-closed structure is conducive to the infiltration of electrolytes and fast lithium ion-transfer inside the electrode material, thus improving the rate performance of the battery. Our work may provide an effective strategy for designing layered-cathode materials with high rate capability.

Suggested Citation

  • Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1602-:d:339862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cornelius Satria Yudha & Soraya Ulfa Muzayanha & Hendri Widiyandari & Ferry Iskandar & Wahyudi Sutopo & Agus Purwanto, 2019. "Synthesis of LiNi 0.85 Co 0.14 Al 0.01 O 2 Cathode Material and its Performance in an NCA/Graphite Full-Battery," Energies, MDPI, vol. 12(10), pages 1-14, May.
    2. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    3. Robert Bock & Morten Onsrud & Håvard Karoliussen & Bruno G. Pollet & Frode Seland & Odne S. Burheim, 2020. "Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries," Energies, MDPI, vol. 13(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoc Hung Vu & Van-Duong Dao & Ha Tran Huu & Won Bin Im, 2020. "Effect of Synthesis Temperature on Structure and Electrochemical Performance of Spinel-Layered Li 1.33 MnTiO 4 +z in Li-Ion Batteries," Energies, MDPI, vol. 13(11), pages 1-11, June.
    2. Ruixia Chu & Yujian Zou & Peidong Zhu & Shiwei Tan & Fangyuan Qiu & Wenjun Fu & Fu Niu & Wanyou Huang, 2022. "Progress of Single-Crystal Nickel-Cobalt-Manganese Cathode Research," Energies, MDPI, vol. 15(23), pages 1-32, December.
    3. Byungkwon Lim & Hyeon Sook Kim & Jaehwan Park, 2021. "Implicit Interpretation of Indonesian Export Bans on LME Nickel Prices: Evidence from the Announcement Effect," Risks, MDPI, vol. 9(5), pages 1-7, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    3. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    4. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    5. Zhao, Bin, 2017. "Why will dominant alternative transportation fuels be liquid fuels, not electricity or hydrogen?," Energy Policy, Elsevier, vol. 108(C), pages 712-714.
    6. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    10. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    13. Navaratnarajah Kuganathan & Efstratia N. Sgourou & Yerassimos Panayiotatos & Alexander Chroneos, 2019. "Defect Process, Dopant Behaviour and Li Ion Mobility in the Li 2 MnO 3 Cathode Material," Energies, MDPI, vol. 12(7), pages 1-11, April.
    14. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    15. Lu Zhang & Xiaohua Zhang & Guiying Tian & Qinghua Zhang & Michael Knapp & Helmut Ehrenberg & Gang Chen & Zexiang Shen & Guochun Yang & Lin Gu & Fei Du, 2020. "Lithium lanthanum titanate perovskite as an anode for lithium ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    16. Runlin Wang & Haozhe Zhang & Qiyu Liu & Fu Liu & Xile Han & Xiaoqing Liu & Kaiwei Li & Gaozhi Xiao & Jacques Albert & Xihong Lu & Tuan Guo, 2022. "Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Wu, Xiaoyu & Li, Songmei & Wang, Bo & Liu, Jianhua & Yu, Mei, 2020. "Free-standing 3D network-like cathode based on biomass-derived N-doped carbon/graphene/g-C3N4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery," Renewable Energy, Elsevier, vol. 158(C), pages 509-519.
    18. Yi Wu & Saurabh Saxena & Yinjiao Xing & Youren Wang & Chuan Li & Winco K. C. Yung & Michael Pecht, 2018. "Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography," Energies, MDPI, vol. 11(4), pages 1-22, April.
    19. Du, Peng & Cao, Liang & Zhang, Bao & Wang, Chunhui & Xiao, Zhiming & Zhang, Jiafeng & Wang, Dong & Ou, Xing, 2021. "Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Siwu Li & Haolin Zhu & Yuan Liu & Zhilong Han & Linfeng Peng & Shuping Li & Chuang Yu & Shijie Cheng & Jia Xie, 2022. "Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1602-:d:339862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.