IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10014-d887064.html
   My bibliography  Save this article

National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries

Author

Listed:
  • Min Xu

    (College of Humanities, Donghua University, Shanghai 201620, China)

  • Jinjun Qu

    (College of Humanities, Donghua University, Shanghai 201620, China)

  • Mai Li

    (College of Science, Donghua University, Shanghai 201620, China)

Abstract

This study tracks the variety of nations dealing with the issue of energy transition. Through process tracing and a cross-national case study, a comparison of energy policies, research hotspots, and technical aspects of three sustainable energy systems (solar cells, recharge batteries, and hydrogen production) was conducted. We provide an overview of the climate-change political process and identify three broad patterns in energy-related politics in the United States, China, and Europe (energy neo-liberalism, authoritarian environmentalism, and integrated-multinational negotiation). The core processes and optimization strategies to improve the efficiency of sustainable energy usage are analyzed. This study provides both empirical and theoretical contributions to research on energy transitions.

Suggested Citation

  • Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10014-:d:887064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengsong Li & Maoyu Wang & Xinxuan Duan & Lirong Zheng & Xiaopeng Cheng & Yuefei Zhang & Yun Kuang & Yaping Li & Qing Ma & Zhenxing Feng & Wen Liu & Xiaoming Sun, 2019. "Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Jason J. Yoo & Gabkyung Seo & Matthew R. Chua & Tae Gwan Park & Yongli Lu & Fabian Rotermund & Young-Ki Kim & Chan Su Moon & Nam Joong Jeon & Juan-Pablo Correa-Baena & Vladimir Bulović & Seong Sik Shi, 2021. "Efficient perovskite solar cells via improved carrier management," Nature, Nature, vol. 590(7847), pages 587-593, February.
    3. Jianwei Su & Yang Yang & Guoliang Xia & Jitang Chen & Peng Jiang & Qianwang Chen, 2017. "Erratum: Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    4. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    5. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    6. M. Salanne & B. Rotenberg & K. Naoi & K. Kaneko & P.-L. Taberna & C. P. Grey & B. Dunn & P. Simon, 2016. "Efficient storage mechanisms for building better supercapacitors," Nature Energy, Nature, vol. 1(6), pages 1-10, June.
    7. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    8. Renxing Lin & Ke Xiao & Zhengyuan Qin & Qiaolei Han & Chunfeng Zhang & Mingyang Wei & Makhsud I. Saidaminov & Yuan Gao & Jun Xu & Min Xiao & Aidong Li & Jia Zhu & Edward H. Sargent & Hairen Tan, 2019. "Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink," Nature Energy, Nature, vol. 4(10), pages 864-873, October.
    9. Christine Trampusch & Bruno Palier, 2016. "Between X and Y: how process tracing contributes to opening the black box of causality," New Political Economy, Taylor & Francis Journals, vol. 21(5), pages 437-454, September.
    10. Jianwei Su & Yang Yang & Guoliang Xia & Jitang Chen & Peng Jiang & Qianwang Chen, 2017. "Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    11. Nathan S. Lewis, 2001. "Light work with water," Nature, Nature, vol. 414(6864), pages 589-590, December.
    12. Paul Adrianus van Baal & Matthias Finger, 2019. "The Effect of European Integration on Swiss Energy Policy and Governance," Politics and Governance, Cogitatio Press, vol. 7(1), pages 6-16.
    13. Renxing Lin & Jian Xu & Mingyang Wei & Yurui Wang & Zhengyuan Qin & Zhou Liu & Jinlong Wu & Ke Xiao & Bin Chen & So Min Park & Gang Chen & Harindi R. Atapattu & Kenneth R. Graham & Jun Xu & Jia Zhu & , 2022. "All-perovskite tandem solar cells with improved grain surface passivation," Nature, Nature, vol. 603(7899), pages 73-78, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nour El Islam Boukortt & Claudia Triolo & Saveria Santangelo & Salvatore Patanè, 2023. "All-Perovskite Tandem Solar Cells: From Certified 25% and Beyond," Energies, MDPI, vol. 16(8), pages 1-24, April.
    2. Yingxiao Fan & Yu Wu & Yang Xu & Wenhui Li & Huawei Zhou & Xianxi Zhang, 2022. "Situation and Perspectives on Tin-Based Perovskite Solar Cells," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
    3. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Bahram Abdollahi Nejand & David B. Ritzer & Hang Hu & Fabian Schackmar & Somayeh Moghadamzadeh & Thomas Feeney & Roja Singh & Felix Laufer & Raphael Schmager & Raheleh Azmi & Milian Kaiser & Tobias Ab, 2022. "Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency," Nature Energy, Nature, vol. 7(7), pages 620-630, July.
    5. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    6. Yurui Wang & Renxing Lin & Xiaoyu Wang & Chenshuaiyu Liu & Yameen Ahmed & Zilong Huang & Zhibin Zhang & Hongjiang Li & Mei Zhang & Yuan Gao & Haowen Luo & Pu Wu & Han Gao & Xuntian Zheng & Manya Li & , 2023. "Oxidation-resistant all-perovskite tandem solar cells in substrate configuration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Cao, Baoyue & Shi, Hu & Sun, Qiangqiang & Yu, Yan & Chang, Liangliang & Xu, Shan & Zhou, Chunsheng & Zhang, Hongxia & Zhao, Jianghong & Zhu, Yanyan & Yang, Pengju, 2023. "Electron deficiency modulates hydrogen adsorption strength of Ru single-atomic catalyst for efficient hydrogen evolution," Renewable Energy, Elsevier, vol. 210(C), pages 258-268.
    9. Cen, Jianmei & Jiang, Enjun & Zhu, Yuqing & Chen, Zhenyu & Tsiakaras, Panagiotis & Shen, Pei Kang, 2021. "Enhanced electrocatalytic overall water splitting over novel one-pot synthesized Ru–MoO3-x and Fe3O4–NiFe layered double hydroxide on Ni foam," Renewable Energy, Elsevier, vol. 177(C), pages 1346-1355.
    10. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    11. Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
    12. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    13. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    14. Sreeram Valsalakumar & Anurag Roy & Tapas K. Mallick & Justin Hinshelwood & Senthilarasu Sundaram, 2022. "An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development," Energies, MDPI, vol. 16(1), pages 1-29, December.
    15. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    17. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    18. Zhao, Bin, 2017. "Why will dominant alternative transportation fuels be liquid fuels, not electricity or hydrogen?," Energy Policy, Elsevier, vol. 108(C), pages 712-714.
    19. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    20. Salhi, B. & Wudil, Y.S. & Hossain, M.K. & Al-Ahmed, A. & Al-Sulaiman, F.A., 2018. "Review of recent developments and persistent challenges in stability of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 210-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10014-:d:887064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.