IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16603-d1000515.html
   My bibliography  Save this article

Situation and Perspectives on Tin-Based Perovskite Solar Cells

Author

Listed:
  • Yingxiao Fan

    (Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China)

  • Yu Wu

    (Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China)

  • Yang Xu

    (Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China)

  • Wenhui Li

    (Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China)

  • Huawei Zhou

    (Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China)

  • Xianxi Zhang

    (Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China)

Abstract

Perovskite solar cells have become the current research focus because of their high conversion efficiency and other advantages; however, the toxicity of lead used in them has raised environmental concerns. Tin-based perovskite materials have become the most promising alternative materials for perovskite solar cells because of their relatively low toxicity, suitable band gap and relatively higher energy conversion efficiency than perovskite materials based on other elements. In this article, the status of this rapidly growing field, authors’ output and cooperation, hot research topics, important references and the development trends of tin-based perovskite solar cells are identified and visualized using CiteSpace software. The main research fields are found to be optical properties, 3D–2D perovskite and perovskite solar cell conduction band materials. The mixed organic metal halide perovskite solar cell and the CsSnI 3 semiconductor are identified as emerging trends for tin-based perovskite solar cells. Such contents in this article highlight the key points in the wide field of literature so it can be understood efficiently.

Suggested Citation

  • Yingxiao Fan & Yu Wu & Yang Xu & Wenhui Li & Huawei Zhou & Xianxi Zhang, 2022. "Situation and Perspectives on Tin-Based Perovskite Solar Cells," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16603-:d:1000515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    2. Renxing Lin & Ke Xiao & Zhengyuan Qin & Qiaolei Han & Chunfeng Zhang & Mingyang Wei & Makhsud I. Saidaminov & Yuan Gao & Jun Xu & Min Xiao & Aidong Li & Jia Zhu & Edward H. Sargent & Hairen Tan, 2019. "Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink," Nature Energy, Nature, vol. 4(10), pages 864-873, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    2. Chenyang Shi & Jianan Wang & Xia Lei & Qisen Zhou & Weitao Wang & Zhichun Yang & Sanwan Liu & Jiaqi Zhang & He Zhu & Rui Chen & Yongyan Pan & Zhengtian Tan & Wenguang Liu & Zhengjing Zhao & Zihe Cai &, 2025. "Modulating competitive adsorption of hybrid self-assembled molecules for efficient wide-bandgap perovskite solar cells and tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    4. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    5. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    6. Alaa A. Zaky & Ahmed Fathy & Hegazy Rezk & Konstantina Gkini & Polycarpos Falaras & Amlak Abaza, 2021. "A Modified Triple-Diode Model Parameters Identification for Perovskite Solar Cells via Nature-Inspired Search Optimization Algorithms," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    7. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.
    8. Luis León-Alcaide & Lucía Martínez-Goyeneche & Michele Sessolo & Bruno J. C. Vieira & João C. Waerenborgh & J. Alberto Rodríguez-Velamazán & Oscar Fabelo & Matthew J. Cliffe & David A. Keen & Guiller, 2025. "Direct synthesis of an iron metal-organic framework antiferromagnetic glass," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    10. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    11. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    12. Sandeep Kumar Maurya & Hazel Rose Galvan & Gaurav Gautam & Xiaojie Xu, 2022. "Recent Progress in Transparent Conductive Materials for Photovoltaics," Energies, MDPI, vol. 15(22), pages 1-25, November.
    13. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    15. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    16. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    17. Zhao, Xinhai & Huang, Chaopeng & Birgersson, Erik & Suprun, Nikita & Tan, Hu Quee & Zhang, Yurou & Jiang, Yuxia & Shou, Chunhui & Sun, Jingsong & Peng, Jun & Xue, Hansong, 2025. "Accelerating device characterization in perovskite solar cells via neural network approach," Applied Energy, Elsevier, vol. 392(C).
    18. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    19. Simone M. P. Meroni & Katherine E. A. Hooper & Tom Dunlop & Jenny A. Baker & David Worsley & Cecile Charbonneau & Trystan M. Watson, 2020. "Scribing Method for Carbon Perovskite Solar Modules," Energies, MDPI, vol. 13(7), pages 1-15, April.
    20. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16603-:d:1000515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.