IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4031-d1144604.html
   My bibliography  Save this article

Stability and Performance Enhancement of Perovskite Solar Cells: A Review

Author

Listed:
  • Maria Khalid

    (Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall, UK)

  • Tapas Kumar Mallick

    (Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall, UK)

Abstract

Perovskite solar cells (PSCs) have seen a rapid increase in power conversion efficiencies (PCEs) over just a few years and are already competing against other photovoltaic (PV) technologies. The PCE of hybrid PSCs exhibiting distinct properties has increased from 3.8% in 2009 to ≈30% in 2023, making it a strong contender for the next generation of PV devices. However, their long-term stability is a critical issue that must be addressed before these devices can be commercialised. This review begins with a discussion of the evolution of different generations of solar cells, and the following part presents details of perovskite characteristics and prospective strategies to improve their performance. Next, the relationship of stability of PSCs with different environmental conditions, including moisture, UV light, and temperature, is discussed. Besides the development of PSC–silicon tandem solar cells, an efficient way to improve PCE is also discussed. Towards the end, we discuss a novel idea of implementing PSCs with a concentrated PV application in order to achieve higher efficiency and compete with other PV technologies by catching incident high-proton density. This review offers perspectives on the future development of emerging PSC technologies in terms of device performance enhancement and improved stability, which are central to tandem and concentrated PSC technology.

Suggested Citation

  • Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4031-:d:1144604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Zhiping Wang & Qianqian Lin & Bernard Wenger & M. Greyson Christoforo & Yen-Hung Lin & Matthew T. Klug & Michael B. Johnston & Laura M. Herz & Henry J. Snaith, 2018. "Publisher Correction: High irradiance performance of metal halide perovskites for concentrator photovoltaics," Nature Energy, Nature, vol. 3(11), pages 1013-1013, November.
    3. Zhengshan J. Yu & Joe V. Carpenter & Zachary C. Holman, 2018. "Techno-economic viability of silicon-based tandem photovoltaic modules in the United States," Nature Energy, Nature, vol. 3(9), pages 747-753, September.
    4. Zhiping Wang & Qianqian Lin & Bernard Wenger & M. Greyson Christoforo & Yen-Hung Lin & Matthew T. Klug & Michael B. Johnston & Laura M. Herz & Henry J. Snaith, 2018. "High irradiance performance of metal halide perovskites for concentrator photovoltaics," Nature Energy, Nature, vol. 3(10), pages 855-861, October.
    5. Kevin A. Bush & Axel F. Palmstrom & Zhengshan J. Yu & Mathieu Boccard & Rongrong Cheacharoen & Jonathan P. Mailoa & David P. McMeekin & Robert L. Z. Hoye & Colin D. Bailie & Tomas Leijtens & Ian Mariu, 2017. "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, Nature, vol. 2(4), pages 1-7, April.
    6. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    2. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    3. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    4. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    5. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    6. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    7. Onur Yildirim & Matteo Bonomo & Nadia Barbero & Cesare Atzori & Bartolomeo Civalleri & Francesca Bonino & Guido Viscardi & Claudia Barolo, 2020. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies," Energies, MDPI, vol. 13(21), pages 1-48, October.
    8. Joseph Asare & Dahiru M. Sanni & Benjamin Agyei-Tuffour & Ernest Agede & Oluwaseun Kehinde Oyewole & Aditya S. Yerramilli & Nutifafa Y. Doumon, 2021. "A Hybrid Hole Transport Layer for Perovskite-Based Solar Cells," Energies, MDPI, vol. 14(7), pages 1-13, April.
    9. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    10. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    11. Mehmood, Umer & Al-Ahmed, Amir & Afzaal, Mohammad & Al-Sulaiman, Fahad A. & Daud, Muhammad, 2017. "Recent progress and remaining challenges in organometallic halides based perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1-14.
    12. Maria Khalid & Anurag Roy & Shubhranshu Bhandari & Senthilarasu Sundaram & Tapas K. Mallick, 2021. "Integrating Concentrated Optics for Ambient Perovskite Solar Cells," Energies, MDPI, vol. 14(9), pages 1-12, May.
    13. Alharbi, Fahhad H. & Kais, Sabre, 2015. "Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1073-1089.
    14. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    15. Judith A. Cherni & Raúl Olalde Font & Lucía Serrano & Felipe Henao & Antonio Urbina, 2016. "Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods," Energies, MDPI, vol. 9(12), pages 1-19, December.
    16. Rauf, Ijaz A. & Rezai, Pouya, 2017. "A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: A simplified approach to reviewing literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 408-422.
    17. Cuili Gai & Jigang Wang & Yongsheng Wang & Junming Li, 2019. "The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance," Energies, MDPI, vol. 13(1), pages 1-26, December.
    18. Jongchul Lim & Manuel Kober-Czerny & Yen-Hung Lin & James M. Ball & Nobuya Sakai & Elisabeth A. Duijnstee & Min Ji Hong & John G. Labram & Bernard Wenger & Henry J. Snaith, 2022. "Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Maddah, Hisham A. & Berry, Vikas & Behura, Sanjay K., 2020. "Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Li, Guiqiang & Lu, Yashun & Shittu, Samson & Zhao, Xudong, 2020. "Scale effect on electrical characteristics of CPC-PV," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4031-:d:1144604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.