IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p115-d1557264.html
   My bibliography  Save this article

Dimethyl Sulfoxide Mixed-Solvent Engineering for Efficient Perovskite/Silicon Tandem Solar Cell

Author

Listed:
  • Haifeng Zhang

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Youling He

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Qian Li

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Hao Zhang

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Yinqing Sun

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Tengteng Yang

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Yinyi Ma

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Tian Yang

    (Sichuan Research Center of New Materials, National Energy Novel Materials Center, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, China)

  • Xindi Zheng

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Lin Mao

    (School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China)

Abstract

The integration of perovskite with silicon for constructing tandem solar cells (TSCs) represents a promising route in photovoltaic technology. The hybrid sequential deposition (HSD) method, combining thermal evaporation and spin-coating, is crucial for developing perovskite films in textured perovskite/silicon tandem solar cells. However, the process faces challenges due to incomplete reactions caused by the dense perovskite coverage layer (CPCL) formed from high-crystallinity precursors. The CPCL hinders the diffusion of organic salts into the bottom precursor layer, leading to performance degradation and accelerated device aging. Herein, this study explores several polar solvents as additives to n-butanol (nBA) solvent in order to enhance the permeability of organic salts through the CPCL, and we demonstrate that dimethyl sulfoxide (DMSO) as an additive solvent can effectively assist organic salts in rapidly diffusing through the precursor layer, thereby promoting the complete transformation of uniform perovskite crystals. The resulting perovskite films exhibited complete conversion, uniform crystallization, and improved quality. As a result, the target TSCs achieved an increased maximum power conversion efficiency (PCE) of 29.12%. This study offers a robust pathway for depositing high-quality perovskite films on industrial-grade textured silicon substrates, laying a solid foundation for advancing perovskite/silicon tandem solar cells technology.

Suggested Citation

  • Haifeng Zhang & Youling He & Qian Li & Hao Zhang & Yinqing Sun & Tengteng Yang & Yinyi Ma & Tian Yang & Xindi Zheng & Lin Mao, 2024. "Dimethyl Sulfoxide Mixed-Solvent Engineering for Efficient Perovskite/Silicon Tandem Solar Cell," Energies, MDPI, vol. 18(1), pages 1-11, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:115-:d:1557264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    2. Kevin A. Bush & Axel F. Palmstrom & Zhengshan J. Yu & Mathieu Boccard & Rongrong Cheacharoen & Jonathan P. Mailoa & David P. McMeekin & Robert L. Z. Hoye & Colin D. Bailie & Tomas Leijtens & Ian Mariu, 2017. "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, Nature, vol. 2(4), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    2. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    3. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    4. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    5. Alaa A. Zaky & Ahmed Fathy & Hegazy Rezk & Konstantina Gkini & Polycarpos Falaras & Amlak Abaza, 2021. "A Modified Triple-Diode Model Parameters Identification for Perovskite Solar Cells via Nature-Inspired Search Optimization Algorithms," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    6. Wenbo Li & Zhe Li & Shun Zhou & Yanzhuo Gou & Guang Li & Jinghao Li & Cheng Wang & Yan Zeng & Jiakai Yan & Yan Li & Wei Dai & Yaoguang Rong & Weijun Ke & Ti Wang & Hongxing Xu, 2025. "Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.
    8. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    9. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    10. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    11. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    12. Sandeep Kumar Maurya & Hazel Rose Galvan & Gaurav Gautam & Xiaojie Xu, 2022. "Recent Progress in Transparent Conductive Materials for Photovoltaics," Energies, MDPI, vol. 15(22), pages 1-25, November.
    13. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    14. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    15. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    16. Simone M. P. Meroni & Katherine E. A. Hooper & Tom Dunlop & Jenny A. Baker & David Worsley & Cecile Charbonneau & Trystan M. Watson, 2020. "Scribing Method for Carbon Perovskite Solar Modules," Energies, MDPI, vol. 13(7), pages 1-15, April.
    17. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    18. Jae-Keun Hwang & Seok-Hyun Jeong & Donghwan Kim & Hae-Seok Lee & Yoonmook Kang, 2023. "A Review on Dry Deposition Techniques: Pathways to Enhanced Perovskite Solar Cells," Energies, MDPI, vol. 16(16), pages 1-19, August.
    19. Huh, Daihong & Choi, Hak-Jong & Byun, Minseop & Kim, Kwan & Lee, Heon, 2019. "Long-term analysis of PV module with large-area patterned anti-reflective film," Renewable Energy, Elsevier, vol. 135(C), pages 525-528.
    20. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:115-:d:1557264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.