IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v72y2017icp907-915.html
   My bibliography  Save this article

Moving into the domain of perovskite sensitized solar cell

Author

Listed:
  • Ubani, C.A.
  • Ibrahim, M.A.
  • Teridi, M.A.M.

Abstract

Emerging development in perovskite sensitized solar cell have ushered in a transformative shift in the evolution of efficient and low-cost solar cell technologies. The improvement represents significant progress in the performance of sensitized solar cells since their breakthrough in 1991. Existing unexplored opportunities with these new developments depicts potential platform to achieve higher efficiency. Earlier development in solid state dye sensitized solar cells (DSSCs) has led to the incorporation of novel semiconductor nanocrystalline quantum dots (QDs) and perovskite as alternative sensitizer to improve device stability and enhance absorption coefficient. The attractiveness of perovskite CH3NH3PbI3 as sensitizer for solar cell incorporates its cost-effectiveness and light-harvesting capability which has shown consistent improvement in device performance in recent years. The incorporation of metal chalcogenides into solid-state dye sensitized solar cells showed significant improvement in power conversion efficiency (PCE) of 18.05%. With CH3NH3PbX3 (X=Cl, Br, or I) as an alternative to dye, device performance has shown to be promising although emerging challenges require a prioritized concern. In this review, recent exciting improvements in the performance of perovskite solar cells were discussed and the fundamental mechanisms incorporated into the structural evolution leading to PCE of 20.8%. In addition, prospects overriding present challenges were proposed for future work toward practical realization of highly-efficient solar cell upon optimization.

Suggested Citation

  • Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
  • Handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:907-915
    DOI: 10.1016/j.rser.2017.01.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Jun-Ho Yum & Etienne Baranoff & Florian Kessler & Thomas Moehl & Shahzada Ahmad & Takeru Bessho & Arianna Marchioro & Elham Ghadiri & Jacques-E. Moser & Chenyi Yi & Md. K. Nazeeruddin & Michael Grätze, 2012. "A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    3. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    4. U. Bach & D. Lupo & P. Comte & J. E. Moser & F. Weissörtel & J. Salbeck & H. Spreitzer & M. Grätzel, 1998. "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, Nature, vol. 395(6702), pages 583-585, October.
    5. Fan Fu & Thomas Feurer & Timo Jäger & Enrico Avancini & Benjamin Bissig & Songhak Yoon & Stephan Buecheler & Ayodhya N. Tiwari, 2015. "Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    6. Nam Joong Jeon & Jun Hong Noh & Woon Seok Yang & Young Chan Kim & Seungchan Ryu & Jangwon Seo & Sang Il Seok, 2015. "Compositional engineering of perovskite materials for high-performance solar cells," Nature, Nature, vol. 517(7535), pages 476-480, January.
    7. Tomas Leijtens & Giles E. Eperon & Sandeep Pathak & Antonio Abate & Michael M. Lee & Henry J. Snaith, 2013. "Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    8. Richard Van Noorden, 2014. "Cheap solar cells tempt businesses," Nature, Nature, vol. 513(7519), pages 470-470, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    2. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    3. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    4. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    5. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    6. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    7. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    8. Naveen Kumar Elumalai & Md Arafat Mahmud & Dian Wang & Ashraf Uddin, 2016. "Perovskite Solar Cells: Progress and Advancements," Energies, MDPI, vol. 9(11), pages 1-20, October.
    9. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    10. Gong, Jiawei & Liang, Jing & Sumathy, K., 2012. "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5848-5860.
    11. Mehmood, Umer & Al-Ahmed, Amir & Afzaal, Mohammad & Al-Sulaiman, Fahad A. & Daud, Muhammad, 2017. "Recent progress and remaining challenges in organometallic halides based perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1-14.
    12. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    13. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    14. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    15. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    16. Alharbi, Fahhad H. & Kais, Sabre, 2015. "Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1073-1089.
    17. Shoieb Shaik & Ziyou Zhou & Zhongliang Ouyang & Rebecca Han & Dawen Li, 2021. "Polymer Additive Assisted Fabrication of Compact and Ultra-Smooth Perovskite Thin Films with Fast Lamp Annealing," Energies, MDPI, vol. 14(9), pages 1-10, May.
    18. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    19. Shariatinia, Zahra, 2020. "Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Zhuang Zhang & Huanhuan Wang & T. Jesper Jacobsson & Jingshan Luo, 2022. "Big data driven perovskite solar cell stability analysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:907-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.