IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v109y2019icp160-186.html
   My bibliography  Save this article

An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites

Author

Listed:
  • Ali, Nasir
  • Rauf, Sajid
  • Kong, Weiguang
  • Ali, Shahid
  • Wang, Xiaoyu
  • Khesro, Amir
  • Yang, Chang Ping
  • Zhu, Bin
  • Wu, Huizhen

Abstract

Despite their facile synthesis and unprecedently increased power conversion efficiency, there is a dark side of organo-metal halide perovskites solar-cell i.e. their intrinsic environmental instability. A little moisture, harsh ultraviolet-light, and slightly higher thermal stress demolish it quickly into its constituents. A solution to these instability issues is a prerequisite to commercialize this next-generation solar-cell technology. To understand the degradation mechanism in perovskites, different models have been proposed. Similarly, to prevent them from environmental hazards, various strategies have been adopted. For instance, 2D-perovskites are introduced as a stable alternative to their 3D-counterparts. However, due to their wider bandgaps, 2D-perovskites failed to compete with 3D-perovskites in the race of power conversion efficiency. Therefore, a hybrid 2D/3D-perovskites are introduced which brought together, the high power conversion efficiency of 3D-perovskites and extended environmental stability of their 2D counterparts. The first section of this review discusses in detail about the proposed mechanisms behind the perovskites decompositions due to environmental factors including; humidity, radiation, and thermal stress. While, the second part summarizes several strategies adopted to prevent perovskites degradation; particularly, the strategy of shielding 3D-perovskites with its 2D counterpart, which is the most promising one. Furthermore, this review provides details of the overall progress been made in the field of pure-2D, quasi-2D, and hybrid-2D/3D perovskites solar-cells. In the end, a brief outlook on the challenges remaining in the way of commercialization of perovskites solar-cells and our opinion to their possible solutions is given.

Suggested Citation

  • Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
  • Handle: RePEc:eee:rensus:v:109:y:2019:i:c:p:160-186
    DOI: 10.1016/j.rser.2019.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    3. G. Grancini & C. Roldán-Carmona & I. Zimmermann & E. Mosconi & X. Lee & D. Martineau & S. Narbey & F. Oswald & F. De Angelis & M. Graetzel & Mohammad Khaja Nazeeruddin, 2017. "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    4. Zhiping Wang & Qianqian Lin & Francis P. Chmiel & Nobuya Sakai & Laura M. Herz & Henry J. Snaith, 2017. "Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites," Nature Energy, Nature, vol. 2(9), pages 1-10, September.
    5. Jin-Wook Lee & Zhenghong Dai & Tae-Hee Han & Chungseok Choi & Sheng-Yung Chang & Sung-Joon Lee & Nicholas De Marco & Hongxiang Zhao & Pengyu Sun & Yu Huang & Yang Yang, 2018. "2D perovskite stabilized phase-pure formamidinium perovskite solar cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    6. Tomas Leijtens & Giles E. Eperon & Sandeep Pathak & Antonio Abate & Michael M. Lee & Henry J. Snaith, 2013. "Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    7. Asghar, M.I. & Zhang, J. & Wang, H. & Lund, P.D., 2017. "Device stability of perovskite solar cells – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 131-146.
    8. G. Divitini & S. Cacovich & F. Matteocci & L. Cinà & A. Di Carlo & C. Ducati, 2016. "In situ observation of heat-induced degradation of perovskite solar cells," Nature Energy, Nature, vol. 1(2), pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).
    2. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    3. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    4. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    5. Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    7. Salhi, B. & Wudil, Y.S. & Hossain, M.K. & Al-Ahmed, A. & Al-Sulaiman, F.A., 2018. "Review of recent developments and persistent challenges in stability of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 210-222.
    8. Mehmood, Umer & Al-Ahmed, Amir & Afzaal, Mohammad & Al-Sulaiman, Fahad A. & Daud, Muhammad, 2017. "Recent progress and remaining challenges in organometallic halides based perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1-14.
    9. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    10. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    11. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    12. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    13. Giovanni Landi & Sergio Pagano & Heinz Christoph Neitzert & Costantino Mauro & Carlo Barone, 2023. "Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells," Energies, MDPI, vol. 16(3), pages 1-37, January.
    14. Zhang, Jingyi & Chang, Nathan & Fagerholm, Cara & Qiu, Ming & Shuai, Ling & Egan, Renate & Yuan, Chris, 2022. "Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    16. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    17. Alharbi, Fahhad H. & Kais, Sabre, 2015. "Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1073-1089.
    18. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    19. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    20. Judith A. Cherni & Raúl Olalde Font & Lucía Serrano & Felipe Henao & Antonio Urbina, 2016. "Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods," Energies, MDPI, vol. 9(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:109:y:2019:i:c:p:160-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.