IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i5p331-d69259.html
   My bibliography  Save this article

Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells

Author

Listed:
  • Ming-Hsien Li

    (Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan)

  • Jun-Ho Yum

    (Molecular Engineering of Optoelectronic Nanomaterials Lab, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, Lausanne CH-1015, Switzerland)

  • Soo-Jin Moon

    (Photovoltaic-Center, Centre Suisse d’Electronique et Microtechnique, Jaquet-Droz 1, Neuchâtel CH-2002, Switzerland)

  • Peter Chen

    (Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

Considering the increasing global demand for energy and the harmful ecological impact of conventional energy sources, it is obvious that development of clean and renewable energy is a necessity. Since the Sun is our only external energy source, harnessing its energy, which is clean, non-hazardous and infinite, satisfies the main objectives of all alternative energy strategies. With attractive features, i.e. , good performance, low-cost potential, simple processibility, a wide range of applications from portable power generation to power-windows, photoelectrochemical solar cells like dye-sensitized solar cells (DSCs) represent one of the promising methods for future large-scale power production directly from sunlight. While the sensitization of n-type semiconductors (n-SC) has been intensively studied, the use of p-type semiconductor (p-SC), e.g., the sensitization of wide bandgap p-SC and hole transport materials with p-SC have also been attracting great attention. Recently, it has been proved that the p-type inorganic semiconductor as a charge selective material or a charge transport material in organometallic lead halide perovskite solar cells (PSCs) shows a significant impact on solar cell performance. Therefore the study of p-type semiconductors is important to rationally design efficient DSCs and PSCs. In this review, recent published works on p-type DSCs and PSCs incorporated with an inorganic p-type semiconductor and our perspectives on this topic are discussed.

Suggested Citation

  • Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:331-:d:69259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/5/331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/5/331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Burschka & Norman Pellet & Soo-Jin Moon & Robin Humphry-Baker & Peng Gao & Mohammad K. Nazeeruddin & Michael Grätzel, 2013. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, Nature, vol. 499(7458), pages 316-319, July.
    2. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    3. U. Bach & D. Lupo & P. Comte & J. E. Moser & F. Weissörtel & J. Salbeck & H. Spreitzer & M. Grätzel, 1998. "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, Nature, vol. 395(6702), pages 583-585, October.
    4. Hiroshi Kawazoe & Masahiro Yasukawa & Hiroyuki Hyodo & Masaaki Kurita & Hiroshi Yanagi & Hideo Hosono, 1997. "P-type electrical conduction in transparent thin films of CuAlO2," Nature, Nature, vol. 389(6654), pages 939-942, October.
    5. Pablo Docampo & James M. Ball & Mariam Darwich & Giles E. Eperon & Henry J. Snaith, 2013. "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saradh Prasad & Devaraj Durairaj & Mohamad Saleh AlSalhi & Jayaraman Theerthagiri & Prabhakarn Arunachalam & Govindarajan Durai, 2018. "Fabrication of Cost-Effective Dye-Sensitized Solar Cells Using Sheet-Like CoS 2 Films and Phthaloylchitosan-Based Gel-Polymer Electrolyte," Energies, MDPI, vol. 11(2), pages 1-12, January.
    2. Zainal Arifin & Suyitno Suyitno & Syamsul Hadi & Bayu Sutanto, 2018. "Improved Performance of Dye-Sensitized Solar Cells with TiO 2 Nanoparticles/Zn-Doped TiO 2 Hollow Fiber Photoanodes," Energies, MDPI, vol. 11(11), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    2. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    3. Joseph Asare & Dahiru M. Sanni & Benjamin Agyei-Tuffour & Ernest Agede & Oluwaseun Kehinde Oyewole & Aditya S. Yerramilli & Nutifafa Y. Doumon, 2021. "A Hybrid Hole Transport Layer for Perovskite-Based Solar Cells," Energies, MDPI, vol. 14(7), pages 1-13, April.
    4. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    5. Ibn-Mohammed, T. & Koh, S.C.L. & Reaney, I.M. & Acquaye, A. & Schileo, G. & Mustapha, K.B. & Greenough, R., 2017. "Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1321-1344.
    6. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    7. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    8. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    9. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    10. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    11. Jamal, M.S. & Bashar, M.S. & Hasan, A.K. Mahmud & Almutairi, Zeyad A. & Alharbi, Hamad F. & Alharthi, Nabeel H. & Karim, Mohammad R. & Misran, H. & Amin, Nowshad & Sopian, Kamaruzzaman Bin & Akhtaruzz, 2018. "Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 469-488.
    12. Onur Yildirim & Matteo Bonomo & Nadia Barbero & Cesare Atzori & Bartolomeo Civalleri & Francesca Bonino & Guido Viscardi & Claudia Barolo, 2020. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies," Energies, MDPI, vol. 13(21), pages 1-48, October.
    13. Ran Ji & Zongbao Zhang & Yvonne J. Hofstetter & Robin Buschbeck & Christian Hänisch & Fabian Paulus & Yana Vaynzof, 2022. "Perovskite phase heterojunction solar cells," Nature Energy, Nature, vol. 7(12), pages 1170-1179, December.
    14. Mehmood, Umer & Al-Ahmed, Amir & Afzaal, Mohammad & Al-Sulaiman, Fahad A. & Daud, Muhammad, 2017. "Recent progress and remaining challenges in organometallic halides based perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1-14.
    15. Alharbi, Fahhad H. & Kais, Sabre, 2015. "Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1073-1089.
    16. Judith A. Cherni & Raúl Olalde Font & Lucía Serrano & Felipe Henao & Antonio Urbina, 2016. "Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods," Energies, MDPI, vol. 9(12), pages 1-19, December.
    17. Rauf, Ijaz A. & Rezai, Pouya, 2017. "A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: A simplified approach to reviewing literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 408-422.
    18. Cuili Gai & Jigang Wang & Yongsheng Wang & Junming Li, 2019. "The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance," Energies, MDPI, vol. 13(1), pages 1-26, December.
    19. Ali, N. & Hussain, A. & Ahmed, R. & Wang, M.K. & Zhao, C. & Haq, B. Ul & Fu, Y.Q., 2016. "Advances in nanostructured thin film materials for solar cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 726-737.
    20. Maddah, Hisham A. & Berry, Vikas & Behura, Sanjay K., 2020. "Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:331-:d:69259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.