IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1296-d1047091.html
   My bibliography  Save this article

Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells

Author

Listed:
  • Giovanni Landi

    (ENEA, Portici Research Center, Piazzale Enrico Fermi 1, 80055 Portici, NA, Italy)

  • Sergio Pagano

    (Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, SA, Italy
    INFN Gruppo Collegato di Salerno, c/o Università degli Studi di Salerno, 84084 Fisciano, SA, Italy
    CNR-SPIN, c/o Università degli Studi di Salerno, 84084 Fisciano, SA, Italy)

  • Heinz Christoph Neitzert

    (Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, 84084 Fisciano, SA, Italy)

  • Costantino Mauro

    (INFN Gruppo Collegato di Salerno, c/o Università degli Studi di Salerno, 84084 Fisciano, SA, Italy)

  • Carlo Barone

    (Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, 84084 Fisciano, SA, Italy
    INFN Gruppo Collegato di Salerno, c/o Università degli Studi di Salerno, 84084 Fisciano, SA, Italy
    CNR-SPIN, c/o Università degli Studi di Salerno, 84084 Fisciano, SA, Italy)

Abstract

Noise spectroscopy is essentially focused on the investigation of electric fluctuations produced by physical mechanisms intrinsic to conductor materials. Very complex electrical transport phenomena can be interpreted through the study of the fluctuation properties, which provide interesting information both from the point of view of basic research and of applications. In this respect, low-frequency electric noise analysis was proposed more than twenty years ago to determine the quality of solar cells and photovoltaic modules, and, more recently, for the reliability estimation of heterojunction solar cells. This spectroscopic tool is able to unravel specific aspects related to radiation damage. Moreover, it can be used for a detailed temperature-dependent electrical characterization of the charge carrier capture/emission and recombination kinetics. This gives the possibility to directly evaluate the system health state. Real-time monitoring of the intrinsic noise response is also very important for the identification of the microscopic sources of fluctuations and their dynamic processes. This allows for identifying possible strategies to improve efficiency and performance, especially for emerging photovoltaic devices. In this work are the reported results of detailed electrical transport and noise characterizations referring to three different types of solar cells (silicon-based, organic, and perovskite-based) and they are interpreted in terms of specific physical models.

Suggested Citation

  • Giovanni Landi & Sergio Pagano & Heinz Christoph Neitzert & Costantino Mauro & Carlo Barone, 2023. "Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells," Energies, MDPI, vol. 16(3), pages 1-37, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1296-:d:1047091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Yang & Jingbi You, 2017. "Make perovskite solar cells stable," Nature, Nature, vol. 544(7649), pages 155-156, April.
    2. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    3. Weijun Ke & Mercouri G. Kanatzidis, 2019. "Prospects for low-toxicity lead-free perovskite solar cells," Nature Communications, Nature, vol. 10(1), pages 1-4, December.
    4. Jingbo Zhao & Yunke Li & Guofang Yang & Kui Jiang & Haoran Lin & Harald Ade & Wei Ma & He Yan, 2016. "Efficient organic solar cells processed from hydrocarbon solvents," Nature Energy, Nature, vol. 1(2), pages 1-7, February.
    5. Zhang, Jingyi & Chang, Nathan & Fagerholm, Cara & Qiu, Ming & Shuai, Ling & Egan, Renate & Yuan, Chris, 2022. "Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Giovanni Landi & Carlo Barone & Costantino Mauro & Antonietta De Sio & Giovanni Carapella & Heinz Christoph Neitzert & Sergio Pagano, 2017. "Probing Temperature-Dependent Recombination Kinetics in Polymer:Fullerene Solar Cells by Electric Noise Spectroscopy," Energies, MDPI, vol. 10(10), pages 1-14, September.
    7. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    8. G. Divitini & S. Cacovich & F. Matteocci & L. Cinà & A. Di Carlo & C. Ducati, 2016. "In situ observation of heat-induced degradation of perovskite solar cells," Nature Energy, Nature, vol. 1(2), pages 1-6, February.
    9. Kunta Yoshikawa & Hayato Kawasaki & Wataru Yoshida & Toru Irie & Katsunori Konishi & Kunihiro Nakano & Toshihiko Uto & Daisuke Adachi & Masanori Kanematsu & Hisashi Uzu & Kenji Yamamoto, 2017. "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, Nature, vol. 2(5), pages 1-8, May.
    10. Ji-Hye Kim & Dong-Hyuk Kim & Ju-Hee So & Hyung-Jun Koo, 2021. "Toward Eco-Friendly Dye-Sensitized Solar Cells (DSSCs): Natural Dyes and Aqueous Electrolytes," Energies, MDPI, vol. 15(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sreeram Valsalakumar & Anurag Roy & Tapas K. Mallick & Justin Hinshelwood & Senthilarasu Sundaram, 2022. "An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development," Energies, MDPI, vol. 16(1), pages 1-29, December.
    2. Salhi, B. & Wudil, Y.S. & Hossain, M.K. & Al-Ahmed, A. & Al-Sulaiman, F.A., 2018. "Review of recent developments and persistent challenges in stability of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 210-222.
    3. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.
    4. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    6. Ng, C.H. & Lim, H.N. & Hayase, S. & Zainal, Z. & Huang, N.M., 2018. "Photovoltaic performances of mono- and mixed-halide structures for perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 248-274.
    7. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    8. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    9. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    10. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    11. Xiang, Huimin & Liu, Pengyun & Ran, Ran & Wang, Wei & Zhou, Wei & Shao, Zongping, 2022. "Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Litvin, Aleksandr P. & Zhang, Xiaoyu & Berwick, Kevin & Fedorov, Anatoly V. & Zheng, Weitao & Baranov, Alexander V., 2020. "Carbon-based interlayers in perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    13. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Guo, Lukai & Wang, Hao, 2022. "Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Yingxiao Fan & Yu Wu & Yang Xu & Wenhui Li & Huawei Zhou & Xianxi Zhang, 2022. "Situation and Perspectives on Tin-Based Perovskite Solar Cells," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
    16. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    18. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    19. Moreno, Álex & Chemisana, Daniel & Lamnatou, Chrysovalantou & Maestro, Santiago, 2023. "Energy and photosynthetic performance investigation of a semitransparent photovoltaic rooftop greenhouse for building integration," Renewable Energy, Elsevier, vol. 215(C).
    20. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1296-:d:1047091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.