IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61128-y.html
   My bibliography  Save this article

Total-area world-record efficiency of 27.03% for 350.0 cm2 commercial-sized single-junction silicon solar cells

Author

Listed:
  • Hongbo Tong

    (Lanzhou University
    LONGi Green Energy Technology Co. Ltd)

  • Shan Tan

    (Lanzhou University
    LONGi Green Energy Technology Co. Ltd)

  • Yongshuai Zhang

    (LONGi Green Energy Technology Co. Ltd)

  • Yuru He

    (LONGi Green Energy Technology Co. Ltd)

  • Chao Ding

    (LONGi Green Energy Technology Co. Ltd)

  • Hongchao Zhang

    (LONGi Green Energy Technology Co. Ltd)

  • Jinhua He

    (LONGi Green Energy Technology Co. Ltd)

  • Jun Cao

    (Lanzhou University)

  • Hai Liu

    (Lanzhou University)

  • Yali Li

    (Lanzhou University)

  • Jikai Kang

    (LONGi Green Energy Technology Co. Ltd)

  • Xinxing Xu

    (LONGi Green Energy Technology Co. Ltd)

  • Chen Chen

    (LONGi Green Energy Technology Co. Ltd)

  • Yao Chen

    (LONGi Green Energy Technology Co. Ltd)

  • Feilong Sun

    (LONGi Green Energy Technology Co. Ltd)

  • Bowen Feng

    (LONGi Green Energy Technology Co. Ltd)

  • Heng Sun

    (LONGi Green Energy Technology Co. Ltd)

  • Xian Jiang

    (LONGi Green Energy Technology Co. Ltd)

  • Long Yu

    (LONGi Green Energy Technology Co. Ltd)

  • Jinyu Li

    (LONGi Green Energy Technology Co. Ltd)

  • Deyan He

    (Lanzhou University)

  • Junshuai Li

    (Lanzhou University)

  • Zhenguo Li

    (Lanzhou University
    LONGi Green Energy Technology Co. Ltd)

Abstract

Performance improvement is the cornerstone to facilitate the healthy and sustainable development of photovoltaic industry. Meanwhile, the aesthetics of solar panels becomes growingly concerned with the continuously improved requirements from customers. Accordingly, developing the modules having both a higher power conversion efficiency (PCE) and better aesthetic appearance is increasingly important. The structural advantage of back contact (BC) silicon solar cells, having a grid-line-free front surface, endows them with an exceptionally aesthetic appearance and the highest theoretical PCE among single-junction silicon solar cells. Fully utilizing these structural features is crucial for achieving high performance and gaining an insight into their industrial potential. Here, a facile double-sided light management strategy, incorporating hierarchical micro/submicrotextured pyramids on the sunny side and nanostructured polished surface in the rear gap region to reduce optical losses and improve appearance uniformity, has been developed on tunnel oxide passivated back contact (TBC) solar cells, to create a record total-area PCE of 27.03% for 350.0 cm2 commercial-sized single-junction silicon solar cells. In addition, the low bifaciality factor that is the main short slab for BC technology is overcome by our TBC devices with the bifaciality factor of > 80%.

Suggested Citation

  • Hongbo Tong & Shan Tan & Yongshuai Zhang & Yuru He & Chao Ding & Hongchao Zhang & Jinhua He & Jun Cao & Hai Liu & Yali Li & Jikai Kang & Xinxing Xu & Chen Chen & Yao Chen & Feilong Sun & Bowen Feng & , 2025. "Total-area world-record efficiency of 27.03% for 350.0 cm2 commercial-sized single-junction silicon solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61128-y
    DOI: 10.1038/s41467-025-61128-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61128-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61128-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hao Lin & Miao Yang & Xiaoning Ru & Genshun Wang & Shi Yin & Fuguo Peng & Chengjian Hong & Minghao Qu & Junxiong Lu & Liang Fang & Can Han & Paul Procel & Olindo Isabella & Pingqi Gao & Zhenguo Li & X, 2023. "Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers," Nature Energy, Nature, vol. 8(8), pages 789-799, August.
    2. Hua Wu & Feng Ye & Miao Yang & Fei Luo & Xiyan Tang & Qing Tang & Haoran Qiu & Zhipeng Huang & Genshun Wang & Zhaoqing Sun & Hao Lin & Junzhe Wei & Yunpeng Li & Xiaoqiang Tian & Jinsheng Zhang & Lei X, 2024. "Silicon heterojunction back-contact solar cells by laser patterning," Nature, Nature, vol. 635(8039), pages 604-609, November.
    3. Thomas G. Allen & James Bullock & Xinbo Yang & Ali Javey & Stefaan De Wolf, 2019. "Passivating contacts for crystalline silicon solar cells," Nature Energy, Nature, vol. 4(11), pages 914-928, November.
    4. Genshun Wang & Qiao Su & Hanbo Tang & Hua Wu & Hao Lin & Can Han & Tingting Wang & Chaowei Xue & Junxiong Lu & Liang Fang & Zhenguo Li & Xixiang Xu & Pingqi Gao, 2024. "27.09%-efficiency silicon heterojunction back contact solar cell and going beyond," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Kunta Yoshikawa & Hayato Kawasaki & Wataru Yoshida & Toru Irie & Katsunori Konishi & Kunihiro Nakano & Toshihiko Uto & Daisuke Adachi & Masanori Kanematsu & Hisashi Uzu & Kenji Yamamoto, 2017. "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, Nature, vol. 2(5), pages 1-8, May.
    6. Armin Richter & Ralph Müller & Jan Benick & Frank Feldmann & Bernd Steinhauser & Christian Reichel & Andreas Fell & Martin Bivour & Martin Hermle & Stefan W. Glunz, 2021. "Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses," Nature Energy, Nature, vol. 6(4), pages 429-438, April.
    7. Yang Li & Xiaoning Ru & Miao Yang & Yuhe Zheng & Shi Yin & Chengjian Hong & Fuguo Peng & Minghao Qu & Chaowei Xue & Junxiong Lu & Liang Fang & Chao Su & Daifen Chen & Junhua Xu & Chao Yan & Zhenguo Li, 2024. "Flexible silicon solar cells with high power-to-weight ratios," Nature, Nature, vol. 626(7997), pages 105-110, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genshun Wang & Qiao Su & Hanbo Tang & Hua Wu & Hao Lin & Can Han & Tingting Wang & Chaowei Xue & Junxiong Lu & Liang Fang & Zhenguo Li & Xixiang Xu & Pingqi Gao, 2024. "27.09%-efficiency silicon heterojunction back contact solar cell and going beyond," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hao Lin & Miao Yang & Xiaoning Ru & Genshun Wang & Shi Yin & Fuguo Peng & Chengjian Hong & Minghao Qu & Junxiong Lu & Liang Fang & Can Han & Paul Procel & Olindo Isabella & Pingqi Gao & Zhenguo Li & X, 2023. "Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers," Nature Energy, Nature, vol. 8(8), pages 789-799, August.
    3. Hasnain Yousuf & Muhammad Quddamah Khokhar & Muhammad Aleem Zahid & Matheus Rabelo & Sungheon Kim & Duy Phong Pham & Youngkuk Kim & Junsin Yi, 2022. "Tunnel Oxide Deposition Techniques and Their Parametric Influence on Nano-Scaled SiO x Layer of TOPCon Solar Cell: A Review," Energies, MDPI, vol. 15(15), pages 1-29, August.
    4. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    6. Yehui Wen & Tianchi Zhang & Xingtao Wang & Tiantian Liu & Yu Wang & Rui Zhang & Miao Kan & Li Wan & Weihua Ning & Yong Wang & Deren Yang, 2024. "Amorphous (lysine)2PbI2 layer enhanced perovskite photovoltaics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    8. Mehmood, Haris & Nasser, Hisham & Zaidi, Syed Muhammad Hassan & Tauqeer, Tauseef & Turan, Raşit, 2022. "Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer," Renewable Energy, Elsevier, vol. 183(C), pages 188-201.
    9. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Changhyun Lee & Soohyun Bae & HyunJung Park & Dongjin Choi & Hoyoung Song & Hyunju Lee & Yoshio Ohshita & Donghwan Kim & Yoonmook Kang & Hae-Seok Lee, 2020. "Properties of Thermally Evaporated Titanium Dioxide as an Electron-Selective Contact for Silicon Solar Cells," Energies, MDPI, vol. 13(3), pages 1-10, February.
    11. Liu, Jiaping & Qi, Yu & Ke, Juyang & Zhao, Yicong & Li, Xiaoqing & Yu, Yang & Sun, Xuyang & Guo, Rui, 2024. "Mechanically programmable substrate enable highly stretchable solar cell arrays for self-powered electronic skin," Applied Energy, Elsevier, vol. 367(C).
    12. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    13. Mehmood, Haris & Nasser, Hisham & Tauqeer, Tauseef & Turan, Raşit, 2019. "Simulation of silicon heterostructure solar cell featuring dopant-free carrier-selective molybdenum oxide and titanium oxide contacts," Renewable Energy, Elsevier, vol. 143(C), pages 359-367.
    14. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.
    15. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    16. Chen Chen & Liang Wang & Weiyi Xia & Ke Qiu & Chuanhang Guo & Zirui Gan & Jing Zhou & Yuandong Sun & Dan Liu & Wei Li & Tao Wang, 2024. "Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    18. Ng, C.H. & Lim, H.N. & Hayase, S. & Zainal, Z. & Huang, N.M., 2018. "Photovoltaic performances of mono- and mixed-halide structures for perovskite solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 248-274.
    19. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    20. Lin, Dingyi & Deng, Fujin & Hua, Wei & Cheng, Ming & Wang, Zhiming, 2024. "High-performance optical dialogue for power electronic system," Applied Energy, Elsevier, vol. 376(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61128-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.