IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v8y2023i8d10.1038_s41560-023-01255-2.html
   My bibliography  Save this article

Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers

Author

Listed:
  • Hao Lin

    (LONGi Green Energy Technology Co., Ltd.
    Sun Yat-sen University)

  • Miao Yang

    (LONGi Green Energy Technology Co., Ltd.)

  • Xiaoning Ru

    (LONGi Green Energy Technology Co., Ltd.)

  • Genshun Wang

    (LONGi Green Energy Technology Co., Ltd.
    Sun Yat-sen University)

  • Shi Yin

    (LONGi Green Energy Technology Co., Ltd.)

  • Fuguo Peng

    (LONGi Green Energy Technology Co., Ltd.)

  • Chengjian Hong

    (LONGi Green Energy Technology Co., Ltd.)

  • Minghao Qu

    (LONGi Green Energy Technology Co., Ltd.)

  • Junxiong Lu

    (LONGi Green Energy Technology Co., Ltd.)

  • Liang Fang

    (LONGi Green Energy Technology Co., Ltd.)

  • Can Han

    (Sun Yat-sen University
    Delft University of Technology)

  • Paul Procel

    (Delft University of Technology)

  • Olindo Isabella

    (Delft University of Technology)

  • Pingqi Gao

    (Sun Yat-sen University)

  • Zhenguo Li

    (LONGi Green Energy Technology Co., Ltd.)

  • Xixiang Xu

    (LONGi Green Energy Technology Co., Ltd.)

Abstract

Silicon heterojunction (SHJ) solar cells have reached high power conversion efficiency owing to their effective passivating contact structures. Improvements in the optoelectronic properties of these contacts can enable higher device efficiency, thus further consolidating the commercial potential of SHJ technology. Here we increase the efficiency of back junction SHJ solar cells with improved back contacts consisting of p-type doped nanocrystalline silicon and a transparent conductive oxide with a low sheet resistance. The electrical properties of the hole-selective contact are analysed and compared with a p-type doped amorphous silicon contact. We demonstrate improvement in the charge carrier transport and a low contact resistivity (

Suggested Citation

  • Hao Lin & Miao Yang & Xiaoning Ru & Genshun Wang & Shi Yin & Fuguo Peng & Chengjian Hong & Minghao Qu & Junxiong Lu & Liang Fang & Can Han & Paul Procel & Olindo Isabella & Pingqi Gao & Zhenguo Li & X, 2023. "Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers," Nature Energy, Nature, vol. 8(8), pages 789-799, August.
  • Handle: RePEc:nat:natene:v:8:y:2023:i:8:d:10.1038_s41560-023-01255-2
    DOI: 10.1038/s41560-023-01255-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01255-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01255-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenzhu Liu & Jianhua Shi & Liping Zhang & Anjun Han & Shenglei Huang & Xiaodong Li & Jun Peng & Yuhao Yang & Yajun Gao & Jian Yu & Kai Jiang & Xinbo Yang & Zhenfei Li & Wenjie Zhao & Junlin Du & Xin S, 2022. "Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells," Nature Energy, Nature, vol. 7(5), pages 427-437, May.
    2. Thomas G. Allen & James Bullock & Xinbo Yang & Ali Javey & Stefaan De Wolf, 2019. "Passivating contacts for crystalline silicon solar cells," Nature Energy, Nature, vol. 4(11), pages 914-928, November.
    3. Xianlin Qu & Yongcai He & Minghao Qu & Tianyu Ruan & Feihong Chu & Zilong Zheng & Yabin Ma & Yuanping Chen & Xiaoning Ru & Xixiang Xu & Hui Yan & Lihua Wang & Yongzhe Zhang & Xiaojing Hao & Ziv Hameir, 2021. "Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells," Nature Energy, Nature, vol. 6(2), pages 194-202, February.
    4. Kunta Yoshikawa & Hayato Kawasaki & Wataru Yoshida & Toru Irie & Katsunori Konishi & Kunihiro Nakano & Toshihiko Uto & Daisuke Adachi & Masanori Kanematsu & Hisashi Uzu & Kenji Yamamoto, 2017. "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, Nature, vol. 2(5), pages 1-8, May.
    5. Armin Richter & Ralph Müller & Jan Benick & Frank Feldmann & Bernd Steinhauser & Christian Reichel & Andreas Fell & Martin Bivour & Martin Hermle & Stefan W. Glunz, 2021. "Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses," Nature Energy, Nature, vol. 6(4), pages 429-438, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasnain Yousuf & Muhammad Quddamah Khokhar & Muhammad Aleem Zahid & Matheus Rabelo & Sungheon Kim & Duy Phong Pham & Youngkuk Kim & Junsin Yi, 2022. "Tunnel Oxide Deposition Techniques and Their Parametric Influence on Nano-Scaled SiO x Layer of TOPCon Solar Cell: A Review," Energies, MDPI, vol. 15(15), pages 1-29, August.
    2. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Wang, Ji-Xiang & Zhong, Mingliang & Wu, Zhe & Guo, Mengyue & Liang, Xin & Qi, Bo, 2022. "Ground-based investigation of a directional, flexible, and wireless concentrated solar energy transmission system," Applied Energy, Elsevier, vol. 322(C).
    4. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    5. Mehmood, Haris & Nasser, Hisham & Zaidi, Syed Muhammad Hassan & Tauqeer, Tauseef & Turan, Raşit, 2022. "Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer," Renewable Energy, Elsevier, vol. 183(C), pages 188-201.
    6. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Changhyun Lee & Soohyun Bae & HyunJung Park & Dongjin Choi & Hoyoung Song & Hyunju Lee & Yoshio Ohshita & Donghwan Kim & Yoonmook Kang & Hae-Seok Lee, 2020. "Properties of Thermally Evaporated Titanium Dioxide as an Electron-Selective Contact for Silicon Solar Cells," Energies, MDPI, vol. 13(3), pages 1-10, February.
    8. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    9. Feihong Chu & Xianlin Qu & Yongcai He & Wenling Li & Xiaoqing Chen & Zilong Zheng & Miao Yang & Xiaoning Ru & Fuguo Peng & Minghao Qu & Kun Zheng & Xixiang Xu & Hui Yan & Yongzhe Zhang, 2023. "Prediction of sub-pyramid texturing as the next step towards high efficiency silicon heterojunction solar cells," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.
    11. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    12. Abyl Muradov & Daria Frolushkina & Vadim Samusenkov & Gulsara Zhamanbayeva & Sebastian Kot, 2021. "Methods of Stability Control of Perovskite Solar Cells for High Efficiency," Energies, MDPI, vol. 14(10), pages 1-16, May.
    13. Hoyoung Song & Changhyun Lee & Jiyeon Hyun & Sang-Won Lee & Dongjin Choi & Dowon Pyun & Jiyeon Nam & Seok-Hyun Jeong & Jiryang Kim & Soohyun Bae & Hyunju Lee & Yoonmook Kang & Donghwan Kim & Hae-Seok , 2021. "Monolithic Perovskite-Carrier Selective Contact Silicon Tandem Solar Cells Using Molybdenum Oxide as a Hole Selective Layer," Energies, MDPI, vol. 14(11), pages 1-9, May.
    14. Mostafa M. Salah & Abdelhalim Zekry & Ahmed Shaker & Mohamed Abouelatta & Mohamed Mousa & Ahmed Saeed, 2022. "Investigation of Electron Transport Material-Free Perovskite/CIGS Tandem Solar Cell," Energies, MDPI, vol. 15(17), pages 1-16, August.
    15. Sai Nikhil Vodapally & Mohd Hasan Ali, 2022. "A Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency," Energies, MDPI, vol. 16(1), pages 1-18, December.
    16. Huang, Gongyi & Liang, Ying & Sun, Xiaofang & Xu, Chuanzhong & Yu, Fei, 2020. "Analyzing S-Shaped I–V characteristics of solar cells by solving three-diode lumped-parameter equivalent circuit model explicitly," Energy, Elsevier, vol. 212(C).
    17. Huangjun Xue & Xin Wen & Cheng Fu & Haolan Zhan & Zongquan Zou & Ruifen Zhang & Yongpeng Xia & Fen Xu & Lixian Sun, 2023. "Solar Energy Conversion and Electron Storage by a Cu 2 O/CuO Photocapacitive Electrode," Energies, MDPI, vol. 16(7), pages 1-11, April.
    18. Lucia V. Mercaldo & Eugenia Bobeico & Antonella De Maria & Marco Della Noce & Manuela Ferrara & Vera La Ferrara & Laura Lancellotti & Gabriella Rametta & Gennaro V. Sannino & Iurie Usatii & Paola Dell, 2021. "Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells with Nanocrystalline Si/SiO x Tunnel Junction," Energies, MDPI, vol. 14(22), pages 1-13, November.
    19. Eka Pratikna & Lusi Safriani & Nowo Riveli & Budi Adiperdana & Suci Winarsih & Annisa Aprilia & Dita Puspita Sari & Isao Watanabe & Risdiana Risdiana, 2021. "Effect of Light Irradiation on the Diffusion Rate of the Charge Carrier Hopping Mechanism in P3HT–ZnO Nanoparticles Studied by μ + SR," Energies, MDPI, vol. 14(20), pages 1-11, October.
    20. Muhammad Azhar Ansari & Giovanni Ciampi & Sergio Sibilio, 2024. "Novel Materials for Semi-Transparent Organic Solar Cells," Energies, MDPI, vol. 17(2), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:8:y:2023:i:8:d:10.1038_s41560-023-01255-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.