Author
Listed:
- Johannes Zanoxolo Mbese
(School of Pure & Applied Chemistry, Department of Chemical and Earth Sciences, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa
Energy, Material, and Inorganic Chemistry Research Group (EMICREG), University of Fort Hare, Alice 5700, South Africa)
Abstract
Single-junction perovskite solar cells (PSCs) have been one of the most promising photovoltaic technologies owing to their high-power conversion efficiencies (PCEs) of ~27% and the low-cost fabrication processes involved, which pay off significantly given their distinct structural characteristics. Recently, inorganic hole-transport materials (HTMs) such as nickel oxide (NiO x ) have been developed and received considerable attention for use in OPVs due to their excellent thermal stability, low-cost materials, and compatibility with scalable deposition methods. Here, we summarize the recent progress on inorganic HTMs for PSCs, which can be divided into three categories: NiO x , copper-based compounds, and emerging new alternatives. The deposition method (sputtering, atomic layer deposition, or a solution-based technique) is one of the most important factors affecting the performance and stability of PSCs. Finally, we review interfacial engineering strategies, such as surface modifications and doping, which can enhance charge transport and extend a device’s lifetime. We also balance the benefits of inorganic HTMs against the key challenges in advancing to commercialization, namely interior defects and environmental degradation. In this review, we summarize the recent progress and challenges toward developing cost-efficient and stable PSCs with inorganic HTMs and provide insights into the future development of these materials.
Suggested Citation
Johannes Zanoxolo Mbese, 2025.
"Advancements in Inorganic Hole-Transport Materials for Perovskite Solar Cells: A Comparative Review,"
Energies, MDPI, vol. 18(9), pages 1-13, May.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:9:p:2374-:d:1650278
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2374-:d:1650278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.