IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v9y2020i6ne377.html
   My bibliography  Save this article

Photosupercapacitors: A perspective of planar and flexible dual functioning devices

Author

Listed:
  • Satya Kamal Chirauri
  • Asish K. Dehury
  • Yatendra S. Chaudhary

Abstract

The development of technologies to convert solar energy and store it into a usable form of energy at a massive scale is a major thrust of research worldwide. Therefore, suitable energy storage options/devices are being sought after to store electrical energy generated by solar cells through harvesting solar radiation. The integration of solar energy converting device with supercapacitors (SCs) as a single device—called as photosupercapacitor, has great potential to power wearable and portable electronics. This dual functioning device stores the harvested energy electrochemically to provide an alternative source of power, may address the pressing issues for storage of the generated electrical energy. Different configurations to integrate solar cells and storage devices are being explored, and the integration of solar cells, particularly third‐generation, with SCs can provide high‐power conversion efficiencies. Nonetheless, the exploration of flexible electronics to meet the demand for wearable devices that operate continuously without an external power supply is highly desired. In this article, we have thoroughly discussed the developments of integrated devices based on third‐generation planar and flexible solar devices, which include: dye‐sensitized, quantum dot sensitized, organic, perovskite using SCs as energy‐storage devices. Besides, the emphasis is also given on integrated flexible or wearable systems as self‐charging and self‐powered integrated systems. The present perplexing issues and their research perspectives are also elaborated to stimulate the advancement of such integrated devices in the upcoming years. This article is categorized under: Fuel Cells and Hydrogen > Science and Materials Photovoltaics > Science and Materials Energy Research and Innovation > Science and Materials

Suggested Citation

  • Satya Kamal Chirauri & Asish K. Dehury & Yatendra S. Chaudhary, 2020. "Photosupercapacitors: A perspective of planar and flexible dual functioning devices," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(6), November.
  • Handle: RePEc:bla:wireae:v:9:y:2020:i:6:n:e377
    DOI: 10.1002/wene.377
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.377
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scalia, Alberto & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio & Tresso, Elena, 2019. "Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices," Energy, Elsevier, vol. 166(C), pages 789-795.
    2. Chao Li & Md. Monirul Islam & Julian Moore & Joseph Sleppy & Caleb Morrison & Konstantin Konstantinov & Shi Xue Dou & Chait Renduchintala & Jayan Thomas, 2016. "Wearable energy-smart ribbons for synchronous energy harvest and storage," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    3. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    4. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    5. Simiao Niu & Xiaofeng Wang & Fang Yi & Yu Sheng Zhou & Zhong Lin Wang, 2015. "A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    6. Nam-Gyu Park & Michael Grätzel & Tsutomu Miyasaka & Kai Zhu & Keith Emery, 2016. "Towards stable and commercially available perovskite solar cells," Nature Energy, Nature, vol. 1(11), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    2. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    4. Ibn-Mohammed, T. & Koh, S.C.L. & Reaney, I.M. & Acquaye, A. & Schileo, G. & Mustapha, K.B. & Greenough, R., 2017. "Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1321-1344.
    5. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    6. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    7. Caixia Li & Yongsheng Zhu & Fengxin Sun & Changjun Jia & Tianming Zhao & Yupeng Mao & Haidong Yang, 2022. "Research Progress on Triboelectric Nanogenerator for Sports Applications," Energies, MDPI, vol. 15(16), pages 1-15, August.
    8. Yingxiao Fan & Yu Wu & Yang Xu & Wenhui Li & Huawei Zhou & Xianxi Zhang, 2022. "Situation and Perspectives on Tin-Based Perovskite Solar Cells," Sustainability, MDPI, vol. 14(24), pages 1-11, December.
    9. Judith A. Cherni & Raúl Olalde Font & Lucía Serrano & Felipe Henao & Antonio Urbina, 2016. "Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods," Energies, MDPI, vol. 9(12), pages 1-19, December.
    10. Assadi, M.Khalaji & Bakhoda, S. & Saidur, R. & Hanaei, H., 2018. "Recent progress in perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2812-2822.
    11. Sreeram Valsalakumar & Anurag Roy & Tapas K. Mallick & Justin Hinshelwood & Senthilarasu Sundaram, 2022. "An Overview of Current Printing Technologies for Large-Scale Perovskite Solar Cell Development," Energies, MDPI, vol. 16(1), pages 1-29, December.
    12. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Rauf, Ijaz A. & Rezai, Pouya, 2017. "A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: A simplified approach to reviewing literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 408-422.
    14. Ming-Hsien Li & Jun-Ho Yum & Soo-Jin Moon & Peter Chen, 2016. "Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells," Energies, MDPI, vol. 9(5), pages 1-28, April.
    15. Huh, Daihong & Choi, Hak-Jong & Byun, Minseop & Kim, Kwan & Lee, Heon, 2019. "Long-term analysis of PV module with large-area patterned anti-reflective film," Renewable Energy, Elsevier, vol. 135(C), pages 525-528.
    16. Sagar Bhattarai & Mustafa K. A. Mohammed & Jaya Madan & Rahul Pandey & Hima Abdelkader & Lamia Ben Farhat & Mongi Amami & M. Khalid Hossain, 2023. "Comparative Study of Different Perovskite Active Layers for Attaining Higher Efficiency Solar Cells: Numerical Simulation Approach," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    17. Hridoy Roy & Bimol Nath Roy & Md. Hasanuzzaman & Md. Shahinoor Islam & Ayman S. Abdel-Khalik & Mostaf S. Hamad & Shehab Ahmed, 2022. "Global Advancements and Current Challenges of Electric Vehicle Batteries and Their Prospects: A Comprehensive Review," Sustainability, MDPI, vol. 14(24), pages 1-30, December.
    18. Salhi, B. & Wudil, Y.S. & Hossain, M.K. & Al-Ahmed, A. & Al-Sulaiman, F.A., 2018. "Review of recent developments and persistent challenges in stability of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 210-222.
    19. Singh, Rahul & Polu, Anji Reddy & Bhattacharya, B. & Rhee, Hee-Woo & Varlikli, Canan & Singh, Pramod K., 2016. "Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1098-1117.
    20. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:9:y:2020:i:6:n:e377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.