IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63837-w.html
   My bibliography  Save this article

Direct synthesis of an iron metal-organic framework antiferromagnetic glass

Author

Listed:
  • Luis León-Alcaide
  • Lucía Martínez-Goyeneche
  • Michele Sessolo
  • Bruno J. C. Vieira

    (Universidade de Lisboa)

  • João C. Waerenborgh

    (Universidade de Lisboa)

  • J. Alberto Rodríguez-Velamazán

    (CS 20156)

  • Oscar Fabelo

    (CS 20156)

  • Matthew J. Cliffe

    (University of Nottingham)

  • David A. Keen

    (Rutherford Appleton Laboratory)

  • Guillermo Mínguez Espallargas

Abstract

We present a direct route to prepare a family of MOF glasses without a meltable crystalline precursor, in contrast to the conventional melt-quenching approach. This one-step synthesis uses the linker itself as the reaction medium under an inert atmosphere, enabling the incorporation of highly hydrolytically unstable M(II) centers. This route produces high-purity iron (II) MOF glasses avoiding the oxidation and partial degradation commonly associated with the conventional melt-quenching process. The transparent glassy monoliths of formula Fe(im)2–x(bim)x, denoted as dg-MUV-29 (dg = direct-glass), can be prepared with different amounts of imidazole and benzimidazole as well as with linkers with diverse functionalities (NH2, CH3, Br, and Cl). The absence of magnetic impurities allows us to study the magnetic properties of the MOF glass itself and show that MOF glasses are good model systems for topologically-disordered amorphous antiferromagnets. We also present the functional advantages of direct-glass synthesis by creating free-standing films of glassy MOFs and integrating them in optoelectronic devices. Direct-glass synthesis is thus a powerful route to exploit the true functional potential of glassy MOFs, not only realizing further classes of MOF glasses but also unveiling properties that can be accessed with these materials.

Suggested Citation

  • Luis León-Alcaide & Lucía Martínez-Goyeneche & Michele Sessolo & Bruno J. C. Vieira & João C. Waerenborgh & J. Alberto Rodríguez-Velamazán & Oscar Fabelo & Matthew J. Cliffe & David A. Keen & Guiller, 2025. "Direct synthesis of an iron metal-organic framework antiferromagnetic glass," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63837-w
    DOI: 10.1038/s41467-025-63837-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63837-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63837-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas D. Bennett & Jin-Chong Tan & Yuanzheng Yue & Emma Baxter & Caterina Ducati & Nick J. Terrill & Hamish H. -M. Yeung & Zhongfu Zhou & Wenlin Chen & Sebastian Henke & Anthony K. Cheetham & G. Nevi, 2015. "Hybrid glasses from strong and fragile metal-organic framework liquids," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    3. Xuemei Li & Wengang Huang & Andraž Krajnc & Yuwei Yang & Atul Shukla & Jaeho Lee & Mehri Ghasemi & Isaac Martens & Bun Chan & Dominique Appadoo & Peng Chen & Xiaoming Wen & Julian A. Steele & Haira G., 2023. "Interfacial alloying between lead halide perovskite crystals and hybrid glasses," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    2. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    3. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    4. Alaa A. Zaky & Ahmed Fathy & Hegazy Rezk & Konstantina Gkini & Polycarpos Falaras & Amlak Abaza, 2021. "A Modified Triple-Diode Model Parameters Identification for Perovskite Solar Cells via Nature-Inspired Search Optimization Algorithms," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    5. Issa M. Aziz, 2023. "Synthesizing and characterization of Lead Halide Perovskite Nanocrystals solar cells from reused car batteries," Technium, Technium Science, vol. 10(1), pages 14-26.
    6. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    7. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    8. Tonui, Patrick & Oseni, Saheed O. & Sharma, Gaurav & Yan, Qingfenq & Tessema Mola, Genene, 2018. "Perovskites photovoltaic solar cells: An overview of current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1025-1044.
    9. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    10. Sandeep Kumar Maurya & Hazel Rose Galvan & Gaurav Gautam & Xiaojie Xu, 2022. "Recent Progress in Transparent Conductive Materials for Photovoltaics," Energies, MDPI, vol. 15(22), pages 1-25, November.
    11. Maria Khalid & Tapas Kumar Mallick, 2023. "Stability and Performance Enhancement of Perovskite Solar Cells: A Review," Energies, MDPI, vol. 16(10), pages 1-32, May.
    12. Wen-Long Xue & Guo-Qiang Li & Hui Chen & Yu-Chen Han & Li Feng & Lu Wang & Xiao-Ling Gu & Si-Yuan Hu & Yu-Heng Deng & Lei Tan & Martin T. Dove & Wei Li & Jiangwei Zhang & Hongliang Dong & Zhiqiang Che, 2024. "Melt-quenched glass formation of a family of metal-carboxylate frameworks," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Kim, Dong In & Lee, Ji Won & Jeong, Rak Hyun & Yang, Ju Won & Park, Seong & Boo, Jin-Hyo, 2020. "Optical and water-repellent characteristics of an anti-reflection protection layer for perovskite solar cells fabricated in ambient air," Energy, Elsevier, vol. 210(C).
    14. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).
    15. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    16. Hug, Hubert & Bader, Michael & Mair, Peter & Glatzel, Thilo, 2014. "Biophotovoltaics: Natural pigments in dye-sensitized solar cells," Applied Energy, Elsevier, vol. 115(C), pages 216-225.
    17. Simone M. P. Meroni & Katherine E. A. Hooper & Tom Dunlop & Jenny A. Baker & David Worsley & Cecile Charbonneau & Trystan M. Watson, 2020. "Scribing Method for Carbon Perovskite Solar Modules," Energies, MDPI, vol. 13(7), pages 1-15, April.
    18. Habibi, Mehran & Zabihi, Fatemeh & Ahmadian-Yazdi, Mohammad Reza & Eslamian, Morteza, 2016. "Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1012-1031.
    19. Jae-Keun Hwang & Seok-Hyun Jeong & Donghwan Kim & Hae-Seok Lee & Yoonmook Kang, 2023. "A Review on Dry Deposition Techniques: Pathways to Enhanced Perovskite Solar Cells," Energies, MDPI, vol. 16(16), pages 1-19, August.
    20. Haifeng Zhang & Youling He & Qian Li & Hao Zhang & Yinqing Sun & Tengteng Yang & Yinyi Ma & Tian Yang & Xindi Zheng & Lin Mao, 2024. "Dimethyl Sulfoxide Mixed-Solvent Engineering for Efficient Perovskite/Silicon Tandem Solar Cell," Energies, MDPI, vol. 18(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63837-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.