IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i5p2235-2241.html
   My bibliography  Save this article

High-pressure hydrogen storage on microporous zeolites with varying pore properties

Author

Listed:
  • Chung, Kyong-Hwan

Abstract

Hydrogen storage on microporous zeolites was examined using a high pressure dose of hydrogen at 30 °C. The roles of the framework structure, surface area, and pore volume of the zeolites on hydrogen adsorption were investigated. The largest hydrogen storage was obtained on the ultra stable Y (USY) zeolite (0.4 wt%). The hydrogen adsorption isotherms on the zeolites reached a maximum after a hydrogen pressure of 50 bar. The amount of hydrogen adsorption on Mordenite (MOR) zeolites increased with increasing Si/Al molar ratio, which was achieved by dealumination. The amount of hydrogen adsorption increased linearly with increasing pore volume of the zeolites. The hydrogen adsorption behavior was found to be dependent mainly on the pore volume of the zeolites.

Suggested Citation

  • Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2235-2241
    DOI: 10.1016/j.energy.2010.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210000629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    2. Principi, G. & Agresti, F. & Maddalena, A. & Lo Russo, S., 2009. "The problem of solid state hydrogen storage," Energy, Elsevier, vol. 34(12), pages 2087-2091.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Karamanev, Dimitre & Pupkevich, Victor & Penev, Kalin & Glibin, Vassili & Gohil, Jay & Vajihinejad, Vahid, 2017. "Biological conversion of hydrogen to electricity for energy storage," Energy, Elsevier, vol. 129(C), pages 237-245.
    3. Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.
    4. Kalamse, Vijayanand & Wadnerkar, Nitin & Chaudhari, Ajay, 2013. "Multi-functionalized naphthalene complexes for hydrogen storage," Energy, Elsevier, vol. 49(C), pages 469-474.
    5. Park, Jaewoo & Attia, Nour F. & Jung, Minji & Lee, Myoung Eun & Lee, Kiyoung & Chung, Jaewoo & Oh, Hyunchul, 2018. "Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation," Energy, Elsevier, vol. 158(C), pages 9-16.
    6. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Cheng, Jiahao & Cheng, Xingxing & Wang, Zhiqiang & Hussain, Muhammad Bilal & Wang, Meixia, 2023. "Multifunctional carbon aerogels from typha orientalis for applications in adsorption: Hydrogen storage, CO2 capture and VOCs removal," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valero-Pedraza, María José & Martín-Cortés, Alexandra & Navarrete, Alexander & Bermejo, María Dolores & Martín, Ángel, 2015. "Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids," Energy, Elsevier, vol. 91(C), pages 742-750.
    2. Zhang, Yunlong & Li, Jinshan & Zhang, Tiebang & Kou, Hongchao & Hu, Rui & Xue, Xiangyi, 2016. "Hydrogen storage properties of non-stoichiometric Zr0.9TixV2 melt-spun ribbons," Energy, Elsevier, vol. 114(C), pages 1147-1154.
    3. Ding, Xiangqian & Zhu, Yunfeng & Wei, Lingjun & Li, Ying & Li, Liquan, 2013. "Synergistic hydrogen desorption of HCS MgH2 + LiAlH4 composite," Energy, Elsevier, vol. 55(C), pages 933-938.
    4. Gkanas, Evangelos I. & Khzouz, Martin & Panagakos, Grigorios & Statheros, Thomas & Mihalakakou, Giouli & Siasos, Gerasimos I. & Skodras, Georgios & Makridis, Sofoklis S., 2018. "Hydrogenation behavior in rectangular metal hydride tanks under effective heat management processes for green building applications," Energy, Elsevier, vol. 142(C), pages 518-530.
    5. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    6. Meryem Sena Akkus, 2022. "Investigation of Hydrogen Production Performance Using Nanoporous NiCr and NiV Alloys in KBH 4 Hydrolysis," Energies, MDPI, vol. 15(24), pages 1-15, December.
    7. Sukanta Mondal & Pratim Kumar Chattaraj, 2023. "Aromatic Clusters and Hydrogen Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    8. Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
    9. Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
    10. Weng, Baicheng & Wu, Zhu & Li, Zhilin & Yang, Hui, 2012. "Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application," Energy, Elsevier, vol. 38(1), pages 205-211.
    11. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    12. Ádám Révész & Marcell Gajdics & Miratul Alifah & Viktória Kovács Kis & Erhard Schafler & Lajos Károly Varga & Stanislava Todorova & Tony Spassov & Marcello Baricco, 2022. "Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg 65 Ni 20 Cu 5 Y 10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion," Energies, MDPI, vol. 15(15), pages 1-15, August.
    13. Lijuan Yan & Yange Zhang & Jun Liu, 2019. "The Dissociation and Diffusion Features of H2 Molecule on Two Ti Atoms Doped Al(111) Surface," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 16(3), pages 1-4, March.
    14. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    15. Ádám Révész & Roman Paramonov & Tony Spassov & Marcell Gajdics, 2023. "Microstructure and Hydrogen Storage Performance of Ball-Milled MgH 2 Catalyzed by FeTi," Energies, MDPI, vol. 16(3), pages 1-14, January.
    16. Tao Fu & Yun-Ting Tsai & Qiang Zhou, 2022. "Numerical Simulation of Magnesium Dust Dispersion and Explosion in 20 L Apparatus via an Euler–Lagrange Method," Energies, MDPI, vol. 15(2), pages 1-12, January.
    17. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    18. Jayalakshmi, S. & Vasantha, V.S. & Fleury, E. & Gupta, M., 2012. "Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications," Applied Energy, Elsevier, vol. 90(1), pages 94-99.
    19. Xiao, Jinsheng & Tong, Liang & Bénard, Pierre & Chahine, Richard, 2020. "Thermodynamic analysis for hydriding-dehydriding cycle of metal hydride system," Energy, Elsevier, vol. 191(C).
    20. Kai Ma & Erfei Lv & Di Zheng & Weichun Cui & Shuai Dong & Weijie Yang & Zhengyang Gao & Yu Zhou, 2021. "A First-Principles Study on Titanium-Decorated Adsorbent for Hydrogen Storage," Energies, MDPI, vol. 14(20), pages 1-8, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2235-2241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.